Let "f(x)=ax^2+bx+c, a\\not=0." Then the discriminant if "f(x)" is
"D=b^2-4ac"The equation "f(x)=7x-14" has exactly one root
"ax^2+bx+c=7x-14""ax^2+(b-7)x+(c+14)=0""(b-7)^2-4a(c+14)=0"The equation "f(x)=6-3x" has exactly one root
"ax^2+bx+c=6-3x""ax^2+(b+3)x+(c-6)=0""(b+3)^2-4a(c-6)=0"
We have the system
"b^2-14b+49-4ac-56a=0""b^2+6b+9-4ac+24a=0""b^2-4ac=14b+56a-49""b^2-4ac=-6b-24a-9""14b+56a-49=-6b-24a-9""b=-4a+2""b^2-4ac=24a-12-24a-9""D=-21"
The value of the discriminant of "f(x)" is "-21."
Comments
Leave a comment