Let f(x)=ax2+bx+c,a=0. Then the discriminant if f(x) is
D=b2−4acThe equation f(x)=7x−14 has exactly one root
ax2+bx+c=7x−14ax2+(b−7)x+(c+14)=0(b−7)2−4a(c+14)=0The equation f(x)=6−3x has exactly one root
ax2+bx+c=6−3xax2+(b+3)x+(c−6)=0(b+3)2−4a(c−6)=0
We have the system
b2−14b+49−4ac−56a=0b2+6b+9−4ac+24a=0b2−4ac=14b+56a−49b2−4ac=−6b−24a−914b+56a−49=−6b−24a−9b=−4a+2b2−4ac=24a−12−24a−9D=−21
The value of the discriminant of f(x) is −21.
Comments