Let f(x)=ax2+bx+c be a quadratic polynomial.
The equation f(x)=5x−15 has exactly one root
ax2+bx+c=5x−15
ax2+(b−5)x+(c+15)=0
D1=(b−5)2−4a(c+15)=0
The equation f(x)=6x−18 has exactly one root
ax2+bx+c=6x−18
ax2+(b−6)x+(c+18)=0
D2=(b−6)2−4a(c+18)=0
(b−5)2−(b−6)2−4a(c+15−c−18)=0
a=−121(2b−11)
b2−10b+25−4ac+5(2b−11)=0
4ac=b2−30
D0=b2−4ac=b2−(b2−30)=30The maximum value of a discriminant of f(x) is 30.
Comments