Question #147101
Find the sum of squares of all numbers x such that both expressions (x^2) + 6x and x + (1/x) are
integer numbers.
1
Expert's answer
2020-11-29T19:07:29-0500

Let x2+6x=mx^2+6x=m and x+1x=n,x+\dfrac{1}{x}=n, where mm and nn are integer numbers.

If xx ≠ 0\ 0 , then

{x2+6x=mx+1x=n<=>{x2+6xm=0x2nx+1=0\begin{cases} x^2+6x=m\\ x+\dfrac{1}{x}=n \end{cases}<=>\begin{cases} x^2+6x-m=0\\ x^2-nx+1=0 \end{cases}


<=>{nx1+6xm=0x2nx+1=0<=>\begin{cases} nx-1+6x-m=0\\ x^2-nx+1=0 \end{cases}


(n+6)x=m+1(n+6)x=m+1

If n=6n=-6 , then m=1m=-1 and system of equations (1)(1) is equivalent to x2+6x+1=0x^2+6x+1=0 .


x1,2=6±3642=3±8,x_{1,2}=\dfrac{-6\pm \sqrt{36-4}}{2}=-3\pm \sqrt{8},

and (x1)2+(x2)2=9+122+8+9122+8=34(x_1)^2+(x_2)^2=9+12\sqrt{2}+8+9-12\sqrt{2}+8=34


If nn ≠ 6-6 , then x=m+1n+6x=\dfrac{m+1}{n+6} is a rational number.

xx is one of the roots of x2nx+1=0x^2-nx+1=0 . The roots are x1,2=n±n242.x_{1,2}=\dfrac{n\pm\sqrt{n^2-4}}{2}. 

We know, that xx is rational, therefore n24\sqrt{n^2-4} is integer, because square root of integer number is either integer or irrational. If it was irrational, then fraction n±n242\dfrac{n\pm\sqrt{n^2-4}}{2} wouldn’t be a rational number.

So, n24=k2n^2-4=k^2 , where kk is integer.

n2k2=4(nk)(n+k)=4n^2-k^2=4\quad \Leftrightarrow \quad (n-k)(n+k)=4

nkn-k and n+kn+k are both even numbers

(if they are odd, then their product is odd; if one number is odd and another one is even, then their sum is odd, but it is equal to 2n2n )

We have two cases:

1) {nk=2n+k=2\begin{cases} n-k=2 \\ n+k=2 \end{cases} and then n=2n=2k=0k=0 .

2) {nk=2n+k=2\begin{cases} n-k=-2 \\ n+k=-2 \end{cases} and then n=2n=-2k=0.k=0.

If n=2n=2 : x22x+1=(x1)2=0x^2-2x+1=(x-1)^2=0 and x=1x=1 . If this case x2+6xx^2+6x and x+1xx+\dfrac{1}{x} are integers.

If n=2n=-2 : x2+2x+1=(x+1)2=0x^2+2x+1=(x+1)^2=0 and x=1x=-1 . If this case x2+6xx^2+6x and x+1xx+\dfrac{1}{x} are integers.


So, the sum of squares is 34+1+1=3634+1+1=36



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS