"\\displaystyle\n\\textbf{Modeling population growth rates}\\\\\n\n\\textsf{To understand the different models}\\\\\n\\textsf{that are used to represent population}\\\\ \\textsf{dynamics, let's start by looking at a}\\\\\n\\textsf{general equation for the population growth}\\\\\n\\textsf{rate (change in number of individuals}\\\\\n\\textsf{in a population over time):}\\\\\n\n\n\\frac{\\mathrm{d}N}{\\mathrm{d}t} = rN\\\\\n\n\\textsf{is the growth rate of the population}\\\\\n\\textsf{in a given instant,}\\, N\\,\\textsf{is population}\\\\ \\textsf{size,}\\,t\\, \\textsf{is time, and} \\\\\nr\\, \\textsf{is the per capita rate of increase}\\\\\n\\textsf{that is, how quickly the population}\\\\\n\\textsf{grows per individual already in the}\\\\\n\\textsf{population.}\\\\\n\\textsf{If we assume no movement of individuals}\\\\ \\textsf{into or out of the population is,}\\,r\\\\\n\\textsf{just a function of birth and death rates.}\\\\\n\n\n\\textbf{Derivation of the solution to the}\\\\\n\\textsf{differential equation}\\\\\n\n\n\\frac{\\mathrm{d}N}{\\mathrm{d}t} = rN\\\\\n\n\n\\frac{\\mathrm{d}N}{N} = r\\, \\mathrm{d}t\\\\\n\n\n\\int\\,\\frac{\\mathrm{d}N}{N} = \\int\\,r\\, \\mathrm{d}t\\\\\n\n\n\\ln(N) = rt + C\\\\\n\nN = Ae^{rt}\\\\\n\n\\textsf{The population increases exponentially}\\\\\\textsf{as the time increases}\\\\"
Comments
Leave a comment