Right side of the equation is a geometric series with a = s i n ( x ) a = sin(x) a = s in ( x ) and r = s i n 2 ( x ) s i n ( x ) = s i n ( x ) r = \frac{sin^2(x)}{sin(x)} = sin(x) r = s in ( x ) s i n 2 ( x ) = s in ( x ) .
The sum of a geometric series:
S = a 1 − r S = \frac{a}{1-r} S = 1 − r a S = s i n ( x ) 1 − s i n ( x ) S = \frac{sin(x)}{1-sin(x)} S = 1 − s in ( x ) s in ( x ) Hence the equation is:
s i n ( x 2 − 1 ) 1 − s i n ( x 2 − 1 ) = s i n ( x ) 1 − s i n ( x ) \frac{sin(x^2-1)}{1-sin(x^2-1)} = \frac{sin(x)}{1-sin(x)} 1 − s in ( x 2 − 1 ) s in ( x 2 − 1 ) = 1 − s in ( x ) s in ( x )
s i n ( x 2 − 1 ) ( 1 − s i n ( x ) ) = s i n ( x ) ( 1 − s i n ( x 2 − 1 ) ) sin(x^2-1)(1-sin(x)) = sin(x)(1-sin(x^2-1)) s in ( x 2 − 1 ) ( 1 − s in ( x )) = s in ( x ) ( 1 − s in ( x 2 − 1 ))
s i n ( x 2 − 1 ) = s i n ( x ) sin(x^2-1) = sin(x) s in ( x 2 − 1 ) = s in ( x ) Since the period the function y = s i n ( x ) y = sin(x) y = s in ( x ) is 2 π 2\pi 2 π , the equation is:
x 2 − 1 = x + 2 π n x^2-1 = x +2\pi n x 2 − 1 = x + 2 πn
x 2 − x − ( 1 + 2 π n ) = 0 x^2-x-(1+2\pi n) = 0 x 2 − x − ( 1 + 2 πn ) = 0
x 1 = 1 − 5 + 8 π n 2 , x 2 = 1 + 5 + 8 π n 2 , n = 0 , 1 , 2 , . . . x_1 = \frac{1-\sqrt{5+8\pi n }}{2}, x_2 = \frac{1+\sqrt{5+8\pi n }}{2}, n = 0, 1, 2, ... x 1 = 2 1 − 5 + 8 πn , x 2 = 2 1 + 5 + 8 πn , n = 0 , 1 , 2 , ...
In particular, for n = 0 we have:
x 1 = 1 − 5 2 , x 2 = 1 + 5 2 x_1 = \frac{1-\sqrt{5}}{2}, x_2 = \frac{1+\sqrt{5}}{2} x 1 = 2 1 − 5 , x 2 = 2 1 + 5 For n = 1:
x 1 = 1 − 5 + 8 π 2 , x 2 = 1 + 5 + 8 π 2 x_1 = \frac{1-\sqrt{5+8\pi}}{2}, x_2 = \frac{1+\sqrt{5+8\pi}}{2} x 1 = 2 1 − 5 + 8 π , x 2 = 2 1 + 5 + 8 π
Comments