We need to solve the given inequality "\\frac {x^2 - |x| - 12} {|x|}\\le 0"
Solution:
Given inequality
Multiply with "|x|" on both sides of inequality, then we get
"x^2 - |x| - 12 \\le 0 \\space and \\space |x|>0"
We can also write this as,
"|x|^2 - |x| - 12\\le0 \\space and \\space |x|>0"
We can factorize this as,
"|x|^2 - 4|x| + 3|x| - 12 \\le 0"
"|x| ( |x| - 4) + 3 (|x| - 4) \\le 0"
"(|x|+ 3) (|x| - 4) \\le 0"
"(|x|- (- 3)) (|x| - 4) \\le 0"
We can write the |x| as,
"- 3\\le |x| \\le 4 \\space and \\space |x|>0"
But |x| should not be negative and greater than 0
So, the solution would be,
"0< |x| \\le 4"
Comments
Leave a comment