Find the domains of f(x)= (4-x2)1/2 and h(x)= (3-x)1/2.
Given f(x)=4−x2f(x)=\sqrt{4-x^2}f(x)=4−x2 ,h(x)=3−x,h(x)=\sqrt{3-x},h(x)=3−x,
f(x)f(x)f(x) is defined if 4−x2≥0 ⟹ (2−x)(2+x)≥04-x^2\geq 0\implies(2-x)(2+x)\geq04−x2≥0⟹(2−x)(2+x)≥0 . Thus, x∈[−2,2]x\in[-2,2]x∈[−2,2] ,hence the domain of fff is Df=[−2,2]D_f=[-2,2]Df=[−2,2] .
Now, h(x)h(x)h(x) is defined if 3−x≥0 ⟹ x∈(−∞,3]3-x\geq0\implies x\in(-\infty,3]3−x≥0⟹x∈(−∞,3] ,hence the domain of hhh is Dh=(−∞,3]D_h=(-\infty,3]Dh=(−∞,3] .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment