(a) "2|z + 1| = |z \u2212 2|"
Solution:
Let "z=x+iy"
Substitute z in (a)
"2|x+iy+1|=|x+iy-2|"
"2\\sqrt{\\smash[b]{x+iy+1}}=\\sqrt{\\smash[b]{x+iy-2}}"
"2\\sqrt{\\smash[b]{x+1+iy}}=\\sqrt{\\smash[b]{x-2+iy}}"
"2\\sqrt{\\smash[b]{(x+1)^2+y^2}}=\\sqrt{\\smash[b]{(x-2)^2+y^2}}"
"2((x+1)^2+y^2)=(x-2)^2+y^2"
"2x^2+4x+2+2y^2=x^2-4x+4+y^2"
"2x^2-x^2+2y^2-y^2+4x+4x=4-2"
Answer: "x^2+y^2+8x=2"
(b) "|(z + i )\/ z - 5 - 2i | = 1"
Solution:
Cross multiply equation to get;
"|z+i|=|z-5-2i|"
Let "z=x+iy"
Substitute for z;
"x+iy+i=x+iy-5-2i"
"x+i(y+1)=x-5+i(y-2)"
"\\sqrt{\\smash[b]{x^2+(y+1)^2}}=\\sqrt{\\smash[b]{(x-5)^2+(y-2)^2}}"
"x^2+y^2+2y+1=x^2-10x+25+y^2-4y+4"
Simplify;
"x^2-x^2+y^2-y^2+10x+2y+4y=25+4-1"
Answer : "10x+6y=28"
(c) "Im (z + \\frac{9}{z}) = 0"
Solution:
Let "z =x+iy"
Substitute for z in the expression;
"x+iy+\\frac{9}{x+iy}"
Simplify; "\\frac{x+iy(x+iy)}{x+iy}+\\frac{9}{x+iy}"
"\\frac{(x+iy)(x+iy)+9}{x+iy}"
"\\frac{x^2+2ixy-y^2+9}{x+iy}"
Rationalize the denominator;
"\\frac{x^2+2ixy-y^2+9}{x+iy}*\\frac{x-iy}{x-iy}"
"\\frac{x^2(x-iy)+2ixy(x-iy)-y^2(x-iy)+9(x-iy)}{x^2+y^2}"
"\\frac{x^3-ix^2y+2ix^2y+2xy^2-y^2x+iy^3+9x-9iy}{x^2+y^2}"
Put the like terms together;
"\\frac{x^3+2xy^2-y^2x+9x-ix^2y+2ix^2y+iy^3-9iy}{x^2+y^2}"
"\\frac{x^3+2xy^2-y^2x+9x}{x^2+y^2} +\\frac{i(x^2y+y^3-9y)}{x^2+y^2}"
"Im" part states;
"\\frac{(x^2y+y^3-9y)}{x^2+y^2}=0"
"x^2y+y^3-9y=0"
"y(x^2+y^2-9)=0"
"x^2+y^2-9=0"
Answer: "x^2+y^2=9"
Comments
Leave a comment