To solve this problem, we will use
AM ≥GM twice.
Firstly, let us consider
x,x,. ... x-times, y,y,....... y-times,z,z.... z-times.
AM of above numbers is "\\frac {x.x + y.y + z.z} {x+y+z}" = "\\frac {x\u00b2 + y\u00b2 + z\u00b2} {x+y+z}"
Since AM ≥ GM,
"\\frac {x\u00b2+y\u00b2+z\u00b2} {x+y+z}" ≥ ("\\ x^x . y^y . z^z" )"\\ ^ \\frac {1} {(x+y+z)}"
=> ( "\\frac {x\u00b2+y\u00b2+z\u00b2} {x+y+z}" )"\\ ^ {x+y+z}" ≥ "\\ x^x . y^y . z^z" -----------> (1)
To prove "(\\frac{x+y+z}{3})^{x+y+z} \\leq x^x y^y z^z", secondly, let us consider
1/x, 1/x,. ... x-times, 1/y, 1/y,....... y-times,1/z, 1/z.... z-times.
AM of above numbers is "\\frac {x.(1\/x) + y.(1\/y) + z.(1\/z)} {x+y+z}" = "\\frac {3} {x+y+z}"
"\\ [ (1\/x)^x . (1\/y)^y . (1\/z)^z ]" "\\ ^ \\frac {1} {(x+y+z)}"
= [ "\\frac {1} {x^xy^yz^z}" ]"\\ ^ \\frac {1} {(x+y+z)}"
Since AM ≥ GM
"\\frac {3} {x+y+z}" ≥ ["\\frac {1} {x^xy^yz^z}" ]"\\ ^ \\frac {1} {(x+y+z)}"
=> ("\\frac {3} {x+y+z}" )(x+y+z) ≥ "\\frac {1} {x^xy^yz^z}"
Reciprocating,
"\\ x^x . y^y . z^z" ≥ ("\\frac {x+y+z} {3}" )(x+y+z) ---------> (2)
By inequality (1) and (2)
("\\frac {x\u00b2+y\u00b2+z\u00b2} {x+y+z}" )(x+y+z) ≥ "\\ x^x . y^y . z^z" ≥
( "\\frac {x+y+z} {3}" )(x+y+z)
=> ("\\frac {x+y+z} {3}" )(x+y+z)≤ "\\ x^x . y^y . z^z" ≤
("\\frac {x\u00b2+y\u00b2+z\u00b2} {x+y+z}" )(x+y+z)
Comments
Leave a comment