Question #118022
Prove that ((x+y+z)/3)^(x+y+z) ≤ x^x y^y z^z ≤ ((x^2+y^2+z^2)/(x+y+z))^(x+y+z) Where x, y, z element of N
1
Expert's answer
2020-05-28T16:07:08-0400

To solve this problem, we will use

AM ≥GM twice.

Firstly, let us consider

x,x,. ... x-times, y,y,....... y-times,z,z.... z-times.

AM of above numbers is x.x+y.y+z.zx+y+z\frac {x.x + y.y + z.z} {x+y+z} = x2+y2+z2x+y+z\frac {x² + y² + z²} {x+y+z}

GM of above numbers = ( xx.yy.zz\ x^x . y^y . z^z ) 1(x+y+z)\ ^ \frac {1} {(x+y+z)}

Since AM ≥ GM,

x2+y2+z2x+y+z\frac {x²+y²+z²} {x+y+z} ≥ ( xx.yy.zz\ x^x . y^y . z^z ) 1(x+y+z)\ ^ \frac {1} {(x+y+z)}

=> ( x2+y2+z2x+y+z\frac {x²+y²+z²} {x+y+z} ) x+y+z\ ^ {x+y+z} xx.yy.zz\ x^x . y^y . z^z -----------> (1)

To prove  (x+y+z3)x+y+zxxyyzz(\frac{x+y+z}{3})^{x+y+z} \leq x^x y^y z^z, secondly, let us consider

1/x, 1/x,. ... x-times, 1/y, 1/y,....... y-times,1/z, 1/z.... z-times.

AM of above numbers is x.(1/x)+y.(1/y)+z.(1/z)x+y+z\frac {x.(1/x) + y.(1/y) + z.(1/z)} {x+y+z} = 3x+y+z\frac {3} {x+y+z}

GM of above numbers =

 [(1/x)x.(1/y)y.(1/z)z]\ [ (1/x)^x . (1/y)^y . (1/z)^z ]  1(x+y+z)\ ^ \frac {1} {(x+y+z)}

= [ 1xxyyzz\frac {1} {x^xy^yz^z} ] 1(x+y+z)\ ^ \frac {1} {(x+y+z)}

Since AM ≥ GM

3x+y+z\frac {3} {x+y+z} ≥ [1xxyyzz\frac {1} {x^xy^yz^z} ] 1(x+y+z)\ ^ \frac {1} {(x+y+z)}

=> (3x+y+z\frac {3} {x+y+z} )(x+y+z)1xxyyzz\frac {1} {x^xy^yz^z}

Reciprocating,

 xx.yy.zz\ x^x . y^y . z^z ≥ (x+y+z3\frac {x+y+z} {3} )(x+y+z) ---------> (2)

By inequality (1) and (2)

(x2+y2+z2x+y+z\frac {x²+y²+z²} {x+y+z} )(x+y+z)  xx.yy.zz\ x^x . y^y . z^z

( x+y+z3\frac {x+y+z} {3} )(x+y+z)

=> (x+y+z3\frac {x+y+z} {3} )(x+y+z) xx.yy.zz\ x^x . y^y . z^z

(x2+y2+z2x+y+z\frac {x²+y²+z²} {x+y+z} )(x+y+z)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS