I suppose that the task lacks the degree n of the sine, i.e.: sinnx.
For even exponents (i.e., for n=2, 4, 6, …)
sinnx=2nCn2n+2n−11∗k=0∑2n−1(−1)2n−k∗Cnk∗cos((n−2∗k)x)
for odd exponents (i.e., for n=3, 5, 7, …)
sinnx=2n−11∗k=0∑2n−1(−1)2n−1−k∗Cnk∗sin((n−2∗k)x)
where Cnk=k!∗(n−k)!n! is the number of combinations of n elements by k.
Check with n=2:
sin2x=4C21+21∗k=0∑0(−1)∗C20∗cos(2x)=21−cos(2x)
C20=1, C21=2
Or
sin2x=1−cos2x ; cos(2x)=2cos2x−1⟹sin2x=21−cos(2x)
Comments
Leave a comment