Answer to Question #114737 in Algebra for ANJU JAYACHANDRAN

Question #114737
Express sin^x as a linear combination of sin kx and cos kx, k element of Z.
1
Expert's answer
2020-05-31T14:59:46-0400

I suppose that the task lacks the degree n of the sine, i.e.: sinnx.

For even exponents (i.e., for n=2, 4, 6, …

sinnx=Cnn22n+12n1k=0n21(1)n2kCnkcos((n2k)x)sin^nx =\frac {C^\frac n 2_n}{2^n}+\frac 1 {2^{n-1}}*\displaystyle\sum_{k=0}^{\frac n 2-1}(-1)^{\frac n 2-k}*C^k_n*cos((n-2*k)x)

for odd exponents (i.e., for n=3, 5, 7, …

sinnx=12n1k=0n12(1)n12kCnksin((n2k)x)sin^nx =\frac 1 {2^{n-1}}*\displaystyle\sum_{k=0}^{\frac {n-1} 2}(-1)^{\frac {n-1} 2-k}*C^k_n*sin((n-2*k)x)


where Cnk=n!k!(nk)!C^k_n= \frac {n!} {k!*(n-k)!} is the number of combinations of n elements by k.



Check with n=2:

sin2x=C214+12k=00(1)C20cos(2x)=1cos(2x)2sin^2x =\frac {C^1_2}{4}+\frac 1 {2}*\displaystyle\sum_{k=0}^{0}(-1)*C^0_2*cos(2x)=\frac {1-cos(2x)} {2}

C20=1,C^0_2= 1, C21=2C^1_2 =2


Or

sin2x=1cos2xsin^2x = 1-cos^2x ; cos(2x)=2cos2x1    sin2x=1cos(2x)2cos(2x) = 2cos^2x-1\implies sin^2x = \frac {1-cos(2x)} {2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment