Question #114666
Q1) Elimination Method by Matrix and Gauss Elimination method are same mathod?

solve by gauss elimination method

x+2y+3z=4
2x+3y+4z=5
3x+4y+5z=6
1
Expert's answer
2020-05-14T17:48:06-0400

Elimination Method by Matrix and Gauss Elimination method are different methods. For instance, you can't solve system with Elimination Method by Matrix if determinant is equal 0, but you can solve that kind of system with Gauss Elimination method.

{x+2y+3z=42x+3y+4z=53x+4y+5z=6\begin{cases} x +2y+3z=4 \\ 2x+3y+4z=5 \\ 3x+4y+5z=6 \end{cases}


Let's rewrite the system of equations in matrix form and solve it using the Gauss method:

(123423453456)\begin{pmatrix} 1&2&3&\vert4 \\ 2&3&4&\vert5 \\ 3&4&5&\vert6 \end{pmatrix}


Subtract from the second row the first row multiplied by 2

(123     40123345     6)\begin{pmatrix} 1&2&3&\vert\space\space\space\space\space4 \\ 0&-1&-2&|-3 \\ 3&4&5&\vert\space\space\space\space\space6 \end{pmatrix}


Subtract from the third row the first row multiplied by 3

(123     401230246)\begin{pmatrix} 1&2&3&\vert\space\space\space\space\space4 \\ 0&-1&-2&|-3 \\ 0&-2&-4&|-6 \end{pmatrix}


Multiply the second row by -1

(123     4012     30246)\begin{pmatrix} 1&2&3&\vert\space\space\space\space\space4 \\ 0&1&2&\vert\space\space\space\space\space3 \\ 0&-2&-4&|-6 \end{pmatrix}


Subtract from the first row the second row multiplied by 2

(1012012     30246)\begin{pmatrix} 1&0&-1&|-2 \\ 0&1&2&\vert\space\space\space\space\space3 \\ 0&-2&-4&|-6 \end{pmatrix}


Add the second line multiplied by 2 to the third row

(1012012     3000     0)\begin{pmatrix} 1&0&-1&|-2 \\ 0&1&2&\vert\space\space\space\space\space3 \\ 0&0&0&\vert\space\space\space\space\space0 \end{pmatrix}


We can remove last row and get system of equations:

{xz=2y+2z=3\begin{cases} x -z=-2 \\ y+2z=3 \end{cases}


We leave unknown variables x and y on the left side of the equations system, and we move the unknown variable z to the right side

{x=z2y=32z\begin{cases} x =z-2 \\ y=3-2z \end{cases}


Let's take z=αz=\alpha , where α\alpha is an arbitrary number

{x=α2y=32α\begin{cases} x =\alpha-2 \\ y=3-2\alpha \end{cases}


Answer: x=α2,y=32α,z=α,x=\alpha-2, y=3-2\alpha, z=\alpha, where α\alpha is an arbitrary number


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS