Question #114544
0.2 Let z = cos θ + isin θ.
Then z
n = cos(nθ) + isin(nθ) for all n ∈ N (by de Moivre) and z
−n = cos(nθ) − isin(nθ).
(a) Show that 2 cos(nθ) = z
n + z
−n
and 2isin(nθ) = z
n − z
−n
. (2)
(b) Show that 2
n
cosn
θ =

z +
1
z
n
and (2i)
n
sinn
θ =

z −
1
z
n
. (2)
(c) Use (b) to express sin7
θ in terms of multiple angles. (6)
(d) Express cos3
θ sin4
θ in terms of multiple angles. (6)
(e) Eliminate θ from the equations 4x = cos(3θ) + 3 cos θ; 4y = 3 sin θ − sin(3θ). (5
1
Expert's answer
2020-05-11T11:25:07-0400

a)

zn+zn=cos(nθ)+isin(nθ)+cos(nθ)isin(nθ)=2cos(nθ)z^n+z^{-n}=cos(n\theta)+isin(n\theta)+cos(n\theta)-isin(n\theta)=2cos(n\theta)

2cos(nθ)=zn+zn2cos(n\theta)=z^n+z^{-n}

znzn=cos(nθ)+isin(nθ)(cos(nθ)isin(nθ))=2isin(nθ)z^n-z^{-n}=cos(n\theta)+isin(n\theta)-(cos(n\theta)-isin(n\theta))=2isin(n\theta)

2isin(nθ)=znzn2isin(n\theta)=z^n-z^{-n}


b)

2ncosn(θ)=(2cos(θ))n=(z+1z)n2^ncos^n(\theta)=(2cos(\theta))^n=(z+\frac{1}{z})^n

(2i)nsinn(θ)=(2isin(θ))n=(z1z)n(2i)^nsin^n(\theta)=(2isin(\theta))^n=(z-\frac{1}{z})^n

(Here we use formulas from part (a) when n=1 )


c)

sin7(θ)=1(2i)7(2i)7sin7(θ)=1128i(2isin(θ))7=1128i(z1z)7sin^7(\theta)=\frac{1}{(2i)^7}\cdot(2i)^7\cdot sin^7(\theta)=\\-\frac{1}{128i}(2isin(\theta))^7 =-\frac{1}{128i}(z-\frac{1}{z})^7


Using Newton's binomial formula:

(z1z)7=z77z5+21z335z+351z211z3+71z51z7=(z-\frac{1}{z})^7=z^7-7z^5+21z^3-35z+35\frac{1}{z}-21\frac{1}{z^3}+7\frac{1}{z^5}-\frac{1}{z^7}=

(z71z7)7(z51z5)+21(z31z735(z1z))=(z^7-\frac{1}{z^7})-7(z^5-\frac{1}{z^5})+21(z^3-\frac{1}{z^7}-35(z-\frac{1}{z}))=

2isin(7θ)72isin(5θ)+212isin(3θ)352isin(θ)=2i\cdot sin(7\theta)-7\cdot 2i\cdot sin(5\theta)+21\cdot 2i\cdot sin(3\theta)-35\cdot 2i\cdot sin(\theta)=

2i(sin(7θ)7sin(5θ)+21sin(3θ)35sin(θ))2i(sin(7\theta)-7\cdot sin(5\theta)+21\cdot sin(3\theta)-35\cdot sin(\theta))

So, sin7(θ)=1128i2i(sin(7θ)7sin(5θ)+21sin(3θ)35sin(θ))=sin^7(\theta)=-\frac{1}{128i}\cdot2i(sin(7\theta)-7\cdot sin(5\theta)+21\cdot sin(3\theta)-35\cdot sin(\theta))=

164(sin(7θ)7sin(5θ)+21sin(3θ)35sin(θ))-\frac{1}{64}(sin(7\theta)-7\cdot sin(5\theta)+21\cdot sin(3\theta)-35\cdot sin(\theta))


d)

cos3(θ)sin4(θ)=12323cos3(θ)1(2i)4(2i)4sin4(θ)=cos^3(\theta)sin^4(\theta)=\frac{1}{2^3}\cdot2^3\cdot cos^3(\theta)\cdot \frac{1}{(2i)^4}\cdot (2i)^4\cdot sin^4(\theta)=

127(2cos(θ))3(2isin(θ))4=127(z+1z)3(z1z)4=\frac{1}{2^7}(2cos(\theta))^3(2isin(\theta))^4=\frac{1}{2^7}(z+\frac{1}{z})^3(z-\frac{1}{z})^4=

127((z+1z)(z1z))3(z1z)=127(z21z2)3(z1z)=\frac{1}{2^7}((z+\frac{1}{z})(z-\frac{1}{z}))^3(z-\frac{1}{z})=\frac{1}{2^7}(z^2-\frac{1}{z^2})^3(z-\frac{1}{z})=

127(z63z2+31z21z6)(z1z)=\frac{1}{2^7}(z^6-3z^2+3\cdot \frac{1}{z^2}-\frac{1}{z^6})(z-\frac{1}{z})=

127((z61z6)3(z21z2))(z1z)=\frac{1}{2^7}((z^6-\frac{1}{z^6})-3(z^2-\frac{1}{z^2}))(z-\frac{1}{z})=

127(2isin(6θ)32isin(2θ))2isin(θ)=\frac{1}{2^7}(2isin(6\theta)-3\cdot2isin(2\theta))\cdot2isin(\theta)=

125(sin(6θ)3sin(sin(2θ))sin(θ)-\frac{1}{2^5}(sin(6\theta)-3sin(sin(2\theta))sin(\theta)


e)

4x=cos(3θ)+3cos(θ)4y=3sin(θ)sin(3θ)4x=cos(3\theta)+3cos(\theta)\\ 4y=3sin(\theta)-sin(3\theta)

Let's multiply 4y to i and sum up equations.

4x+4iy=cos(3θ)+3cos(θ)+3isin(θ)isin(3θ)=4x+4iy=cos(3\theta)+3cos(\theta)+3isin(\theta)-isin(3\theta)=

=(cos(3θ)isin(3θ))+3(cos(θ)+isin(θ))==(cos(3\theta)-isin(3\theta))+3(cos(\theta)+isin(\theta))=

=z3+3z=z^{-3}+3z

So, 4x is the real part and 4y is imaginary part

4x=Re(z3+3z)4x=Re(z^{-3}+3z)

4y=Im(z3+3z)4y=Im(z^{-3}+3z)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS