a)
"z^n+z^{-n}=cos(n\\theta)+isin(n\\theta)+cos(n\\theta)-isin(n\\theta)=2cos(n\\theta)"
"2cos(n\\theta)=z^n+z^{-n}"
"z^n-z^{-n}=cos(n\\theta)+isin(n\\theta)-(cos(n\\theta)-isin(n\\theta))=2isin(n\\theta)"
"2isin(n\\theta)=z^n-z^{-n}"
b)
"2^ncos^n(\\theta)=(2cos(\\theta))^n=(z+\\frac{1}{z})^n"
"(2i)^nsin^n(\\theta)=(2isin(\\theta))^n=(z-\\frac{1}{z})^n"
(Here we use formulas from part (a) when n=1 )
c)
"sin^7(\\theta)=\\frac{1}{(2i)^7}\\cdot(2i)^7\\cdot sin^7(\\theta)=\\\\-\\frac{1}{128i}(2isin(\\theta))^7\n=-\\frac{1}{128i}(z-\\frac{1}{z})^7"
Using Newton's binomial formula:
"(z-\\frac{1}{z})^7=z^7-7z^5+21z^3-35z+35\\frac{1}{z}-21\\frac{1}{z^3}+7\\frac{1}{z^5}-\\frac{1}{z^7}="
"(z^7-\\frac{1}{z^7})-7(z^5-\\frac{1}{z^5})+21(z^3-\\frac{1}{z^7}-35(z-\\frac{1}{z}))="
"2i\\cdot sin(7\\theta)-7\\cdot 2i\\cdot sin(5\\theta)+21\\cdot 2i\\cdot sin(3\\theta)-35\\cdot 2i\\cdot sin(\\theta)="
"2i(sin(7\\theta)-7\\cdot sin(5\\theta)+21\\cdot sin(3\\theta)-35\\cdot sin(\\theta))"
So, "sin^7(\\theta)=-\\frac{1}{128i}\\cdot2i(sin(7\\theta)-7\\cdot sin(5\\theta)+21\\cdot sin(3\\theta)-35\\cdot sin(\\theta))="
"-\\frac{1}{64}(sin(7\\theta)-7\\cdot sin(5\\theta)+21\\cdot sin(3\\theta)-35\\cdot sin(\\theta))"
d)
"cos^3(\\theta)sin^4(\\theta)=\\frac{1}{2^3}\\cdot2^3\\cdot cos^3(\\theta)\\cdot \\frac{1}{(2i)^4}\\cdot (2i)^4\\cdot sin^4(\\theta)="
"\\frac{1}{2^7}(2cos(\\theta))^3(2isin(\\theta))^4=\\frac{1}{2^7}(z+\\frac{1}{z})^3(z-\\frac{1}{z})^4="
"\\frac{1}{2^7}((z+\\frac{1}{z})(z-\\frac{1}{z}))^3(z-\\frac{1}{z})=\\frac{1}{2^7}(z^2-\\frac{1}{z^2})^3(z-\\frac{1}{z})="
"\\frac{1}{2^7}(z^6-3z^2+3\\cdot \\frac{1}{z^2}-\\frac{1}{z^6})(z-\\frac{1}{z})="
"\\frac{1}{2^7}((z^6-\\frac{1}{z^6})-3(z^2-\\frac{1}{z^2}))(z-\\frac{1}{z})="
"\\frac{1}{2^7}(2isin(6\\theta)-3\\cdot2isin(2\\theta))\\cdot2isin(\\theta)="
"-\\frac{1}{2^5}(sin(6\\theta)-3sin(sin(2\\theta))sin(\\theta)"
e)
"4x=cos(3\\theta)+3cos(\\theta)\\\\\n4y=3sin(\\theta)-sin(3\\theta)"
Let's multiply 4y to i and sum up equations.
"4x+4iy=cos(3\\theta)+3cos(\\theta)+3isin(\\theta)-isin(3\\theta)="
"=(cos(3\\theta)-isin(3\\theta))+3(cos(\\theta)+isin(\\theta))="
"=z^{-3}+3z"
So, 4x is the real part and 4y is imaginary part
"4x=Re(z^{-3}+3z)"
"4y=Im(z^{-3}+3z)"
Comments
Leave a comment