a)
zn+z−n=cos(nθ)+isin(nθ)+cos(nθ)−isin(nθ)=2cos(nθ)
2cos(nθ)=zn+z−n
zn−z−n=cos(nθ)+isin(nθ)−(cos(nθ)−isin(nθ))=2isin(nθ)
2isin(nθ)=zn−z−n
b)
2ncosn(θ)=(2cos(θ))n=(z+z1)n
(2i)nsinn(θ)=(2isin(θ))n=(z−z1)n
(Here we use formulas from part (a) when n=1 )
c)
sin7(θ)=(2i)71⋅(2i)7⋅sin7(θ)=−128i1(2isin(θ))7=−128i1(z−z1)7
Using Newton's binomial formula:
(z−z1)7=z7−7z5+21z3−35z+35z1−21z31+7z51−z71=
(z7−z71)−7(z5−z51)+21(z3−z71−35(z−z1))=
2i⋅sin(7θ)−7⋅2i⋅sin(5θ)+21⋅2i⋅sin(3θ)−35⋅2i⋅sin(θ)=
2i(sin(7θ)−7⋅sin(5θ)+21⋅sin(3θ)−35⋅sin(θ))
So, sin7(θ)=−128i1⋅2i(sin(7θ)−7⋅sin(5θ)+21⋅sin(3θ)−35⋅sin(θ))=
−641(sin(7θ)−7⋅sin(5θ)+21⋅sin(3θ)−35⋅sin(θ))
d)
cos3(θ)sin4(θ)=231⋅23⋅cos3(θ)⋅(2i)41⋅(2i)4⋅sin4(θ)=
271(2cos(θ))3(2isin(θ))4=271(z+z1)3(z−z1)4=
271((z+z1)(z−z1))3(z−z1)=271(z2−z21)3(z−z1)=
271(z6−3z2+3⋅z21−z61)(z−z1)=
271((z6−z61)−3(z2−z21))(z−z1)=
271(2isin(6θ)−3⋅2isin(2θ))⋅2isin(θ)=
−251(sin(6θ)−3sin(sin(2θ))sin(θ)
e)
4x=cos(3θ)+3cos(θ)4y=3sin(θ)−sin(3θ)
Let's multiply 4y to i and sum up equations.
4x+4iy=cos(3θ)+3cos(θ)+3isin(θ)−isin(3θ)=
=(cos(3θ)−isin(3θ))+3(cos(θ)+isin(θ))=
=z−3+3z
So, 4x is the real part and 4y is imaginary part
4x=Re(z−3+3z)
4y=Im(z−3+3z)
Comments