Answer to Question #114730 in Algebra for ANJU JAYACHANDRAN

Question #114730
For any two subsets A and B of a set U , we define their symmetric difference to
be A ∆ B = (A \ B) ∪ (B \ A)
i) Check whether ∆ distributes over ∩ .
ii) Show that A∆ fy =A
iii) Prove that A ∆ B =(A ∩ B compliment ) ∪(A compliment ∩ B).
1
Expert's answer
2020-05-24T20:07:07-0400

1) Ans= Δ\Delta is not distribute over \cap .

Counterexample : Let A={1,2,3,4,5}A=\{ 1,2,3,4,5 \} ,B={4,5,6,7,8}B=\{ 4,5 ,6,7,8\} ,

C={7,8,9,10}C=\{ 7,8,9,10\}

BC={7,8}B\cap C=\{ 7,8\} .

AΔ(BC)=(A(BC))((BC)A)A \Delta (B\cap C)=(A - (B\cap C )) \cup ((B\cap C)-A)

={1,2,3,4,5}{7,8}=\{1,2,3,4,5\} \cup \{ 7,8 \}

={1,2,3,4,5,7,8}=\{ 1,2,3,4,5,7,8\} .

AΔB=(AB)(BA)={1,2,3}{6,7,8}A\Delta B=(A-B)\cup (B-A)=\{ 1,2,3\} \cup \{6,7,8\}

={1,2,3,6,7,8}=\{ 1,2,3,6,7,8\}

AΔC=(AC)(CA)={1,2,3,4,5}{7,8,9,10}A\Delta C=(A-C) \cup (C-A)=\{ 1,2,3,4,5\} \cup \{ 7,8,9,10\}

={1,2,3,4,5,7,8,9,10}=\{ 1,2,3,4,5,7,8,9,10\}

(AΔB)(AΔC)={1,2,3,7,8}(A\Delta B) \cap (A\Delta C)= \{ 1,2,3,7,8\}

 AΔ(BC)(AΔB)(AΔC).\therefore \ A\Delta (B\cap C) \neq (A\Delta B) \cap (A\Delta C).


2) ans : AΔϕ=(Aϕ)(ϕA)A \Delta \phi=( A-\phi ) \cup (\phi - A) =Aϕ=A=A\cup \phi=A

3) ans:= Claim : AΔB=(AB)(AB)A\Delta B=(A\cap B') \cup (A'\cap B)

Let xAB    xA and xB    xA and xBx\in A-B \iff x\in A \ and \ x\notin B \iff x\in A \ and \ x\in B'

    xAB\iff x\in A\cap B' .

Thus , AB=ABA-B=A\cap B'

Similarly , BA=BAB-A= B\cap A' .

Hence , AΔB=(AB)(BA)A\Delta B=(A\cap B') \cup (B\cap A') .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment