1) Ans= Δ is not distribute over ∩ .
Counterexample : Let A={1,2,3,4,5} ,B={4,5,6,7,8} ,
C={7,8,9,10}
B∩C={7,8} .
AΔ(B∩C)=(A−(B∩C))∪((B∩C)−A)
={1,2,3,4,5}∪{7,8}
={1,2,3,4,5,7,8} .
AΔB=(A−B)∪(B−A)={1,2,3}∪{6,7,8}
={1,2,3,6,7,8}
AΔC=(A−C)∪(C−A)={1,2,3,4,5}∪{7,8,9,10}
={1,2,3,4,5,7,8,9,10}
(AΔB)∩(AΔC)={1,2,3,7,8}
∴ AΔ(B∩C)=(AΔB)∩(AΔC).
2) ans : AΔϕ=(A−ϕ)∪(ϕ−A) =A∪ϕ=A
3) ans:= Claim : AΔB=(A∩B′)∪(A′∩B)
Let x∈A−B⟺x∈A and x∈/B⟺x∈A and x∈B′
⟺x∈A∩B′ .
Thus , A−B=A∩B′
Similarly , B−A=B∩A′ .
Hence , AΔB=(A∩B′)∪(B∩A′) .
Comments
Leave a comment