Question #103471
Express sin^5 x as a linear combination of sin kx and coskx, k belongs to Z. using De Moivre's theorem.
1
Expert's answer
2020-02-24T11:42:39-0500

Let's have a look on ι\iota complex number (Cos(x) + ι\iota*Sin(x)). And calculate the fifth power of this number

(Cos(x)+ι\iota*Sin(x))5 = Cos5(x) + 5ι\iota*Cos4(x)Sin(x) + 10ι\iota2Cos3(x)Sin2(x) + 10ι\iota3*Cos2(x)Sin3(x) + 5ι\iota4*Cos(x)Sin4(x) + ι\iota5Sin5(x) [using binomial formula] = (Cos5(x) - 10*Cos3(x)Sin2(x) + 5*Cos(x)Sin4(x)) + ι\iota*(5*Cos4(x)Sin(x) - 10*Cos2(x)Sin3(x) + Sin5(x)).

From the other side, (Cos(x)+ι\iota*Sin(x))5 = Cos(5*x) + ι\iota*Sin(5*x) [using Moivre's theorem]

It means that both numbers are equal.

So Sin(5x) = 5*Cos4(x)Sin(x) - 10*Cos2(x)Sin3(x) + Sin5(x)     \implies

Sin5(x) = Sin(5x) - 5*Cos4(x)Sin(x) + 10*Cos2(x)Sin3(x) = Sin(5x) + 10*(1 - Sin2(x))Sin3(x) - 5*(1 - Sin2(x))2Sin(x) = Sin(5x) + 10*Sin3(x) - 10*Sin5(x) - 5*Sin(x) + 10*Sin3(x) - 5*Sin5(x)     \implies

16*Sin5(x) = Sin(5x) + 20*Sin3(x) - 5*Sin(x)

/// [using the fornula for 4*Sin3(x) = 3*Sin(x) - Sin(3x)]

We get 16*Sin5(x) = Sin(5x) + 15*Sin(x) - 5*Sin(3x) - 5*Sin(x) = Sin(5x) - 5*Sin(3x) + 10*Sin(x)

So, the result is Sin5(x) = (1/16)*Sin(5x) - (5/16)*Sin(3x) + (5/8)*Sin(x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS