Let's have a look on "\\iota" complex number (Cos(x) + "\\iota"*Sin(x)). And calculate the fifth power of this number
(Cos(x)+"\\iota"*Sin(x))5 = Cos5(x) + 5"\\iota"*Cos4(x)Sin(x) + 10"\\iota"2Cos3(x)Sin2(x) + 10"\\iota"3*Cos2(x)Sin3(x) + 5"\\iota"4*Cos(x)Sin4(x) + "\\iota"5Sin5(x) [using binomial formula] = (Cos5(x) - 10*Cos3(x)Sin2(x) + 5*Cos(x)Sin4(x)) + "\\iota"*(5*Cos4(x)Sin(x) - 10*Cos2(x)Sin3(x) + Sin5(x)).
From the other side, (Cos(x)+"\\iota"*Sin(x))5 = Cos(5*x) + "\\iota"*Sin(5*x) [using Moivre's theorem]
It means that both numbers are equal.
So Sin(5x) = 5*Cos4(x)Sin(x) - 10*Cos2(x)Sin3(x) + Sin5(x) "\\implies"
Sin5(x) = Sin(5x) - 5*Cos4(x)Sin(x) + 10*Cos2(x)Sin3(x) = Sin(5x) + 10*(1 - Sin2(x))Sin3(x) - 5*(1 - Sin2(x))2Sin(x) = Sin(5x) + 10*Sin3(x) - 10*Sin5(x) - 5*Sin(x) + 10*Sin3(x) - 5*Sin5(x) "\\implies"
16*Sin5(x) = Sin(5x) + 20*Sin3(x) - 5*Sin(x)
/// [using the fornula for 4*Sin3(x) = 3*Sin(x) - Sin(3x)]
We get 16*Sin5(x) = Sin(5x) + 15*Sin(x) - 5*Sin(3x) - 5*Sin(x) = Sin(5x) - 5*Sin(3x) + 10*Sin(x)
So, the result is Sin5(x) = (1/16)*Sin(5x) - (5/16)*Sin(3x) + (5/8)*Sin(x)
Comments
Leave a comment