Question #288540

Find aba^-1 where (I) a= 5,7,9 b=1,2,3 (ii) a= (1,2,5)(3,4) b=(1,4,5)

1
Expert's answer
2022-01-19T15:19:37-0500

Let us find aba1aba^{-1} where

(i) a=(5,7,9), b=(1,2,3)a=(5,7,9),\ b=(1,2,3)


It follows that a1=(5,9,7).a^{-1}=(5,9,7). Taking into account that the circles aa and bb are independent, and hence they commute, we conclude that

aba1=(5,7,9)(1,2,3)(5,9,7)=(1,2,3)(5,7,9)(5,9,7)=(1,2,3)=b.aba^{-1}=(5,7,9) (1,2,3)(5,9,7)=(1,2,3)(5,7,9)(5,9,7)=(1,2,3)=b.



(ii) a=(1,2,5)(3,4), b=(1,4,5)a=(1,2,5)(3,4),\ b =(1,4,5)


It follows that a1=(3,4)(1,5,2).a^{-1}=(3,4)(1,5,2). Therefore,

aba1=((1,2,5)(3,4))(1,4,5)((3,4)(1,5,2))=((134)(2,5))((3,4)(1,5,2))=(123).aba^{-1}=((1,2,5)(3,4))(1,4,5)((3,4)(1,5,2))=((134)(2,5))((3,4)(1,5,2)) =(123).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS