Question #287598

Let g be a finite non abelian group of order n with the property that G has a subgroup of order K for each positive integer K dividing n. prove that G is not a simple group






1
Expert's answer
2022-01-17T07:28:56-0500

If n is prime then G is abelian, so n can't be prime.

If n is not prime, let n=p1e1×...×pmem,m2n=p_1^{e_1}\times ...\times p_m^{e_m}, m\geq2

(prime decomposition of n)

Now,

p1nG has a subgroup, S of order p1As p1 is prime, so S is abelian.SGp11S is a proper non-trivial subgroup of G G is not simple                     (Proved)p_1|n\Rightarrow \text{G has a subgroup, S of order $p_1$}\\ \text{As $p_1$ is prime, so S is abelian.} \Rightarrow S\neq G\\ p_1\neq1\Rightarrow \text{S is a proper non-trivial subgroup of G}\\~\\ \therefore \texttt{G is not simple }~~~~~~~~~~~~~~~~~~~~\text{(Proved)}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS