Answer to Question #288216 in Abstract Algebra for Pooja

Question #288216

Prove that all the real of the form a+b√2 a,b element of Z forms a ring

1
Expert's answer
2022-01-18T07:35:43-0500

Denote by KK the set of all real numbers of the form a+b2a+b\sqrt{2} where aa and bb are integers, that is

K={a+b2  a,bZ}.K=\{ a+b\sqrt{2}\ |\ a,b\in\mathbb Z\}.


To prove that (K,+,)(K,+,\cdot) is a ring it is sufficient to prove that (K,+,)(K,+,\cdot) is a subring of the ring (R,+,)(\mathbb R,+,\cdot) of real numbers.

Let a+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in K

a+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in Ka+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in K, where a,b,c,dZ.a,b,c,d\in\mathbb Z. Then (a+b2)+(c+d2)=(a+c)+(b+d)2K(a+b\sqrt{2})+ (c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in K(a+b2)+(c+d2)=(a+c)+(b+d)2K(a+b\sqrt{2})+ (c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in K(a+b2)+(c+d2)=(a+c)+(b+d)2K(a+b\sqrt{2})+ (c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in K(a+b2)+(c+d2)=(a+c)+(b+d)2K(a+b\sqrt{2})+ (c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in K, since a+c,b+dZ,a+c,b+d\in\mathbb Z,

(a+b2)(c+d2)=(ac)+(bd)2K(a+b\sqrt{2})- (c+d\sqrt{2})=(a-c)+(b-d)\sqrt{2}\in K

(a+b2)(c+d2)=(ac)+(bd)2K(a+b\sqrt{2})- (c+d\sqrt{2})=(a-c)+(b-d)\sqrt{2}\in K(a+b2)(c+d2)=(ac)+(bd)2K(a+b\sqrt{2})- (c+d\sqrt{2})=(a-c)+(b-d)\sqrt{2}\in K(a+b2)(c+d2)=(ac)+(bd)2K(a+b\sqrt{2})- (c+d\sqrt{2})=(a-c)+(b-d)\sqrt{2}\in K, since ac,bdZ,a-c,b-d\in\mathbb Z,

(a+b2)(c+d2)=(ac+2bd)+(ad+bc)2K(a+b\sqrt{2})\cdot (c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in K

(a+b2)(c+d2)=(ac+2bd)+(ad+bc)2K(a+b\sqrt{2})\cdot (c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in K(a+b2)(c+d2)=(ac+2bd)+(ad+bc)2K(a+b\sqrt{2})\cdot (c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in K(a+b2)(c+d2)=(ac+2bd)+(ad+bc)2K(a+b\sqrt{2})\cdot (c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in K, since ac+2bd,ad+bcZ.ac+2bd, ad+bc\in\mathbb Z.

Therefore, (K,+,)(K,+,\cdot) is a subring of the ring (R,+,)(\mathbb R,+,\cdot), that is (K,+,)(K,+,\cdot) a ring.

Since (R,+,)(\mathbb R,+,\cdot) is a commutative ring, (K,+,)(K,+,\cdot) is a commutative ring as well. The number 1=1+021=1+0\sqrt{2}

1=1+021=1+0\sqrt{2} is the identity of the ring (K,+,)(K,+,\cdot). It follows that (K,+,)(K,+,\cdot) is a commutative ring with identity. Since for any real numbers the equality αβ=0\alpha\cdot\beta=0 implies that α=0\alpha=0 or β=0,\beta=0, in particular, for a+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in Ka+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in Ka+b2,c+d2Ka+b\sqrt{2}, c+d\sqrt{2}\in K, the equality (a+b2)(c+d2)=0(a+b\sqrt{2})(c+d\sqrt{2})=0(a+b2)(c+d2)=0(a+b\sqrt{2})(c+d\sqrt{2})=0(a+b2)(c+d2)=0(a+b\sqrt{2})(c+d\sqrt{2})=0 implies that a+b2=0a+b\sqrt{2}=0a+b2=0a+b\sqrt{2}=0 or c+d2=0.c+d\sqrt{2}=0.c+d2=0.c+d\sqrt{2}=0.

Therefore, (K,+,)(K,+,\cdot) is a ring.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment