Prove for any ring R and a,b∈ R , (a+b)²= a²+2ab+b²
Any commutative ring RRR and a,b∈Ra,b\in Ra,b∈R , (a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2
Prove:
(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)==a⋅a+a⋅b+b⋅a+b⋅b==a2+a⋅b+b⋅a+b2(a+b)2=(a+b)(a+b)a2+2ab+b2=a2+ab+ba+b2ab=ba(a+b)^2=(a+b)(a+b)=a(a+b)+b(a+b)=\\ =a\cdot a+a\cdot b+b\cdot a+b\cdot b=\\ =a^2+a\cdot b+b\cdot a+b^2\\ (a+b)^2=(a+b)(a+b)\\ a^2+2ab+b^2=a^2+ab+ba+b^2\\ ab=ba(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)==a⋅a+a⋅b+b⋅a+b⋅b==a2+a⋅b+b⋅a+b2(a+b)2=(a+b)(a+b)a2+2ab+b2=a2+ab+ba+b2ab=ba
That a ring RRR is commutative
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments