Prove for any ring R and a,b∈ R , (a+b)²= a²+2ab+b²
Any commutative ring "R" and "a,b\\in R" , "(a+b)^2=a^2+2ab+b^2"
Prove:
"(a+b)^2=(a+b)(a+b)=a(a+b)+b(a+b)=\\\\\n=a\\cdot a+a\\cdot b+b\\cdot a+b\\cdot b=\\\\\n=a^2+a\\cdot b+b\\cdot a+b^2\\\\\n(a+b)^2=(a+b)(a+b)\\\\\na^2+2ab+b^2=a^2+ab+ba+b^2\\\\\nab=ba"
That a ring "R" is commutative
Comments
Leave a comment