Check whether R is a group under binary operation
a*b=a+b-ab
(R,*) is a group, if:
1) "\\forall a,b\\in R: a*b\\in R"
2) "\\forall a,b\\in R: (a*b)*c=a*(b*c)"
3) "\\exist e\\isin R" "\\forall a\\in R : a*e=e*a=a"
4) "\\forall a\\isin R" "\\exists a^{-1}\\isin R: a*a^{-1}=a^{-1}*a=e"
1) "\\forall a,b\\in R: (a+b\\isin R, ab\\in R) \\to a*b \\in R"
2) "\\forall a,b\\in R: (a*b)*c = (a+b-ab)*c = a+b-ab+c - (a+b-ab)c ="
"= a+b-ab + c -ac-bc+abc = a-ab-ac+abc+(b+c-bc) =(a+(b+c-bc)) - a(b+c-bc) = a*(b*c)"
3) "a*e = a+e-ae=e+a-ea=e*a"
a * e = a
a + e - ae = a
e(1 - a) = 0
e = 0
"\\exist (e = 0)\\isin R" "\\forall a\\in R : a*0=0*a=a"
4) "a*a^{-1} = e"
"a+a^{-1}-aa^{-1} = 0"
"a+a^{-1}(1-a) = 0"
"a^{-1} = -{\\frac a {1-a}}"
For a=1 there is no "a^{-1}", so R is not a group under binary operation *.
Comments
Leave a comment