(R,*) is a group, if:
1) ∀a,b∈R:a∗b∈R
2) ∀a,b∈R:(a∗b)∗c=a∗(b∗c)
3) ∃e∈R ∀a∈R:a∗e=e∗a=a
4) ∀a∈R ∃a−1∈R:a∗a−1=a−1∗a=e
1) ∀a,b∈R:(a+b∈R,ab∈R)→a∗b∈R
2) ∀a,b∈R:(a∗b)∗c=(a+b−ab)∗c=a+b−ab+c−(a+b−ab)c=
=a+b−ab+c−ac−bc+abc=a−ab−ac+abc+(b+c−bc)=(a+(b+c−bc))−a(b+c−bc)=a∗(b∗c)
3) a∗e=a+e−ae=e+a−ea=e∗a
a * e = a
a + e - ae = a
e(1 - a) = 0
e = 0
∃(e=0)∈R ∀a∈R:a∗0=0∗a=a
4) a∗a−1=e
a+a−1−aa−1=0
a+a−1(1−a)=0
a−1=−1−aa
For a=1 there is no a−1, so R is not a group under binary operation *.
Comments