Let's check the axioms:
1)Associativity:
∀ f,g,h∈G:((f+g)+h)(x)==(f+g)(x)+h(x)=f(x)+g(x)+h(x)==f(x)+(g+h)(x)=(f+(g+h))(x)
2)Commutativity:
∀ f,g∈G:(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)
3)Identity element:
O≡0;∀ f∈G:(f+O)(x)==f(x)+O(x)=f(x)
4)Inverse element:
∀ f∈G ∃(−f):(−f)(x)=−f(x)(f+(−f))(x)=f(x)−f(x)=0=O(x)
So it is Abelian group
Comments