Question #246475

Let G be the set of all real-valued functions on the real line with the binary operation given by pointwise addition of functions: If f, g ∈ G, then f + g is the function whose value at x ∈ R is f (x) + g (x), that is (f + g) (x) = f (x) + g (x). Show that G is a group.


1
Expert's answer
2021-10-05T10:21:31-0400

Let's check the axioms:

1)Associativity:

 f,g,hG:((f+g)+h)(x)==(f+g)(x)+h(x)=f(x)+g(x)+h(x)==f(x)+(g+h)(x)=(f+(g+h))(x)\forall\ f,g,h\in G: ((f+g)+h)(x)= \\=(f+g)(x)+h(x)=f(x)+g(x)+h(x)= \\=f(x)+(g+h)(x)=(f+(g+h))(x)

2)Commutativity:

 f,gG:(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)\forall\ f,g\in G: (f+g)(x)=f(x)+g(x) \\=g(x)+f(x)=(g+f)(x)

3)Identity element:

O0; fG:(f+O)(x)==f(x)+O(x)=f(x)\mathbb{O}\equiv0; \forall\ f\in G: (f+\mathbb{O})(x)= \\= f(x)+\mathbb{O}(x)=f(x)

4)Inverse element:

 fG (f):(f)(x)=f(x)(f+(f))(x)=f(x)f(x)=0=O(x)\forall\ f\in G\ \exist (-f): (-f)(x)=-f(x)\\ (f+(-f))(x)=f(x)-f(x)=0=\mathbb{O}(x)

So it is Abelian group


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS