Answer to Question #233064 in Abstract Algebra for 123

Question #233064

Does { a + b √ 2 | a, b ∈ Z } form a ring (with the usual operations in R )?


Is it commutative? Does it have a unity? Be sure to justify your answers.



1
Expert's answer
2021-09-06T16:06:04-0400

The set A={a+b2} is a subring of R since for any arbitrary elements: a+b2,c+d2a+b2c+d2=(ac)+(bd)2Aand (a+b2)(c+d2)=(ac+2bd)(bc+ad)2AHence since A form a subring, thus it suffices to say that A form a ring.A is commutative since:(a+b2)(c+d2)=(c+d2)(a+b2)=(ac+2bd)(bc+ad)2AIt has a unity since 1A and 1(a+b2)=(a+b2)1=(a+b2)\text{The set $A = \{ a + b\sqrt2\}$ is a subring of $R$ since for any arbitrary elements: }\\ a + b\sqrt2, c+ d\sqrt2\\ a + b\sqrt2 - c+ d\sqrt2 = (a-c) + (b-d)\sqrt2 \in A \\ \text{and } (a + b\sqrt2) (c+ d\sqrt2) = (ac + 2bd)(bc + ad)\sqrt2 \in A \\ \text{Hence since $A$ form a subring, thus it suffices to say that $A$ form a ring.} \\ \text{$A$ is commutative since:} (a + b\sqrt2) (c+ d\sqrt2) = (c+ d\sqrt2)(a + b\sqrt2) = (ac + 2bd)(bc + ad)\sqrt2 \in A \\ \text{It has a unity since $1 \in A$ and } 1\cdot(a + b\sqrt2) = (a + b\sqrt2) \cdot 1= (a + b\sqrt2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment