a)
The magnitude of the cross product can be interpreted as the positive area of the parallelogram having a and b as sides.
in our case:
det(AB,AC)=det(BC,BA)=det(CA,CB)=2(area of ΔABC)
b)
antisymmetry property of determinants states that interchanging two rows of a determinant changes the sign of the determinant
then:
det(AB,AC)=det(AB,AB+BC)=det(AB,AB)+det(AB,BC)=
=det(AB,BC)
det(BC,BA)=−det(BC,AB)=det(AB,BC)
det(CA,CB)=−det(CA,BC)=−det(−(AB+BC),BC)=
=det(AB+BC,BC)=det(AB,BC)+det(BC,BC)=det(AB,BC)
so, det(AB,AC)=det(BC,BA)=det(CA,CB)
Comments