Question #223142

Consider A, B, and C three points of the plan. Show that det(AB, AC) = det(BC, BA) = det (CA, CB)

a) Using a geometrical approach

b) Using the property of antisymmetry of the determinant



1
Expert's answer
2022-01-24T15:41:04-0500

a)

The magnitude of the cross product can be interpreted as the positive area of the parallelogram having a and b as sides.

in our case:

det(AB,AC)=det(BC,BA)=det(CA,CB)=2(area of ΔABC)det(AB, AC) = det(BC, BA) = det (CA, CB)=2(area\ of\ \Delta ABC)


b)

antisymmetry property of determinants states that interchanging two rows of a determinant changes the sign of the determinant


then:


det(AB,AC)=det(AB,AB+BC)=det(AB,AB)+det(AB,BC)=det(AB, AC)=det(AB, AB+BC)=det(AB, AB)+det(AB,BC)=

=det(AB,BC)=det(AB,BC)


det(BC,BA)=det(BC,AB)=det(AB,BC)det(BC, BA)=-det(BC, AB)=det(AB,BC)


det(CA,CB)=det(CA,BC)=det((AB+BC),BC)=det (CA, CB)=-det (CA, BC)=-det (-(AB+BC), BC)=

=det(AB+BC,BC)=det(AB,BC)+det(BC,BC)=det(AB,BC)=det (AB+BC, BC)=det(AB,BC)+det(BC,BC)=det(AB,BC)


so, det(AB,AC)=det(BC,BA)=det(CA,CB)det(AB, AC) = det(BC, BA) = det (CA, CB)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS