Question #218520

Let G be the set of positive real numbers except 1. Define α∗β = αlnβ. Then:

(a) show that (G,∗) is a group.

(b) Is G abelian? if not, find its center.

(c) Give an automorphism of G. 


1
Expert's answer
2021-07-22T18:19:26-0400

Let α,β,γG\alpha,\beta,\gamma \in G. Consider


αβ=αlnβ\alpha * \beta = \alpha^{\ln \beta}

Clearly, αβ\alpha * \beta is positive since the power of any positive real number is always positive.

Next, suppose αβ=1\alpha * \beta =1. Then we have

αlnβ=1=α0lnβ=0β=1\alpha^{\ln \beta}=1=\alpha^0 \Rightarrow \ln \beta =0 \\ \Rightarrow \beta=1

which is a contradiction. Hence αβG\alpha * \beta \in G.

Next, consider

α(βγ)=αln(βlnγ)=α(lnγ)(lnβ)=α(lnβ)(lnγ)=(α(lnβ))lnγ=(αβ)γ\alpha * (\beta * \gamma)=\alpha^{\ln\left(\beta^{\ln\gamma}\right)}=\alpha^{(\ln\gamma)(\ln\beta)} \\ =\alpha^{(\ln\beta)(\ln\gamma)}=\left(\alpha^{(\ln\beta)}\right)^{\ln\gamma} \\=(\alpha * \beta) * \gamma

Next, consider

αe=αlne=α1=α\alpha * e=\alpha^{\ln e}=\alpha^1=\alpha

Similarly, eα=elnα=αe*\alpha=e^{\ln\alpha}=\alpha.

Finally, consider

αe1lnα=αln(e1lnα)=α1lnα=αlogαe=e\alpha*e^{\frac{1}{\ln\alpha}}=\alpha^{\ln{(e^{\frac{1}{\ln\alpha}})}}=\alpha^{\frac{1}{\ln\alpha}} \\=\alpha^{log_{\alpha}e}=e

Similarly,

e1lnαα=(e1lnα)lnα=elnαlnα=e1=ee^{\frac{1}{\ln\alpha}}*\alpha=\left(e^{\frac{1}{\ln\alpha}}\right)^{\ln\alpha}=e^{\frac{\ln\alpha}{\ln\alpha}} \\=e^1=e

So the inverse of α\alpha in GG is e1lnαe^{\frac{1}{\ln\alpha}}.

Since GG satisfies all the conditions of a group, we therefore conclude that GG is a group.


Consider e(lnα)(lnβ)e^{(\ln\alpha)(\ln\beta)}. We can write it as

e(lnα)(lnβ)=(e(lnα))(lnβ)=αlnβ=αβe^{(\ln\alpha)(\ln\beta)}=\left(e^{(\ln\alpha)}\right)^{(\ln\beta)}=\alpha^{\ln\beta} \\=\alpha*\beta

and

e(lnα)(lnβ)=e(lnβ)(lnα)=(e(lnβ))(lnα)=βlnα=βαe^{(\ln\alpha)(\ln\beta)}=e^{(\ln\beta)(\ln\alpha)} \\=\left(e^{(\ln\beta)}\right)^{(\ln\alpha)}=\beta^{\ln\alpha}=\beta*\alpha

So GG is abelian.


Define a function i:GGi:G\rightarrow G such that i(g)=gi(g)=g for all gGg\in G.


Let g,hGg,h\in G . Suppose i(g)=i(h)i(g)=i(h). Then g=hg=h. So ii is one-to-one.


Suppose gGg\in G . Then g=i(g)g=i(g). So ii is onto.


Finally, consider

i(g)i(h)=gh=i(gh)i(g)*i(h)=g*h=i(g*h)

Hence ii is an isomorphism.


Thus we have an automorphism of GG.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS