Question #218160

Let G=fg:R--li:g(x)=ax+b,a,b EQ,a# 01. Check whether or not G is a group with respect to the composition of mappings. For f(x) = 2x + 3, find all g bilong toG such that fog=gof


1
Expert's answer
2021-07-19T15:41:06-0400

Let f,g,hGf,g,h\in G where


f(x)=a1x+b1,g(x)=a2x+b2,h(x)=a3x+b3,a1,b1,a2,b2,a3,b3Rf(x)=a_1x+b_1,g(x)=a_2x+b_2, \\h(x)=a_3x+b_3,a_1,b_1,a_2,b_2,a_3,b_3\in \mathbb{R}

Consider


fg(x)=a1(a2x+b2)+b1=a1a2x+a1b2+b1f\circ g(x)=a_1(a_2x+b_2)+b_1=a_1a_2x+a_1b_2+b_1

Clearly, a1a2,a1b2+b1Ra_1a_2,a_1b_2+b_1\in \mathbb{R} since the sum of product of real numbers is also a real number. Hence fgGf\circ g\in G.

Next,


gh(x)=a2(a3x+b3)+b2=a2a3x+a2b3+b2g\circ h(x)=a_2(a_3x+b_3)+b_2=a_2a_3x+a_2b_3+b_2

So consider

f(gh)(x)=a1(a2a3x+a2b3+b2)+b1=a1a2a3x+a1a2b3+a1b2+b1=a1a2(a3x+b3)+a1b2+b1=(fg)h(x)f\circ(g\circ h)(x)=a_1(a_2a_3x+a_2b_3+b_2)+b_1 \\=a_1a_2a_3x+a_1a_2b_3+a_1b_2+b_1 \\=a_1a_2(a_3x+b_3)+a_1b_2+b_1 \\=(f\circ g)\circ h(x)

Next, let eGe\in G such that e(x)=xe(x)=x. Then we have

ge(x)=a2(e(x))+b=a2x+b2=g(x)=a2x+b2=e(g(x))=eg(x)g\circ e(x)=a_2(e(x))+b=a_2x+b_2=g(x)=a_2x+b_2=e(g(x)) \\=e\circ g(x)

Finally, let k(x)=xa2b2a2k(x)=\dfrac{x}{a_2}-\dfrac{b_2}{a_2} where a0a\neq 0. Clearly, kGk\in G. Now consider


gk(x)=a2(xa2b2a2)+b2=xb2+b2=x=e(x)g\circ k(x)=a_2\left(\dfrac{x}{a_2}-\dfrac{b_2}{a_2}\right)+b_2=x-b_2+b_2=x \\=e(x)

Similarly,


kg(x)=a2x+b2a2b2a2=x=e(x)k\circ g(x)=\dfrac{a_2x+b_2}{a_2}-\dfrac{b_2}{a_2}=x=e(x)

Since GG satisfies all the conditions of a group, we therefore conclude that GG is a group.



Let g(x)=ax+bg(x)=ax+b where a,bRa,b\in \mathbb{R}. Suppose fg=gff\circ g=g\circ f. Then we have


2(g(x))+3=g(2x+3)2(ax+b)+3=a(2x+3)+b2ax+2b+3=2ax+3a+ab2(g(x))+3=g(2x+3) \\ \Rightarrow 2(ax+b)+3=a(2x+3)+b \\ \Rightarrow 2ax+2b+3=2ax+3a+ab

By comparing the terms of both sides of the equation above, we have


2b+3=3a+aba(b+3)=2b+3a=2b+3b+32b+3=3a+ab \Rightarrow a(b+3)=2b+3 \\ \Rightarrow a=\dfrac{2b+3}{b+3}

where b3b\neq -3.

Hence we have the set

{fGf(x)=ax+b where a=2b+3b+3,b3}\{f \in G | f(x)=ax+b \text{ where }a=\dfrac{2b+3}{b+3},b \neq -3\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS