Use Cauchy's Mean Value Theorem to prove the given result.
Let f(x)=sinx,g(x)=cosx for all x∈[α,β]⊂[0,2π]
We know that f(x) and f(x) are derivable on [α,β]⊂R
And f(x)=sinx,g(x)=cosx⇒f′(x)=cosx,g′(x)=−sinx=0∀x∈[α,β]
By Cauchy's Mean Value theorem there exists θ∈(α,β) so that
g(β)−g(α)f(β)−f(α)=g′(θ)f′(θ)
⇒cosβ−cosαsinβ−sinα=−sinθcosθ
⇒sinβ−sinαcosβ−cosα=−cosθsinθ
⇒sinβ−sinαcosβ−cosα=−tanθ
⇒sinα−sinβcosα−cosβ=−tanθ
Therefore
⇒sinα−sinβcosα−cosβ=−tanθ
Comments