Question #184210

Use Cauchy’s mean value theorem to prove that:

{Cos(alpha)- cos(beta) }/{sin(alpha) -sin(beta) }=tan(theta)


1
Expert's answer
2021-05-07T09:16:27-0400

Use Cauchy's Mean Value Theorem to prove the given result.

Let f(x)=sinx,g(x)=cosxf(x)=sinx,g(x)=cosx for all x[α,β][0,π2]x\in \left [ \alpha ,\beta \right ]\subset \left [ 0,\frac{\pi }{2} \right ]

We know that f(x)f(x) and f(x)f(x) are derivable on [α,β]R\left [ \alpha ,\beta \right ]\subset R

And f(x)=sinx,g(x)=cosxf(x)=cosx,g(x)=sinx0x[α,β]f(x)=sinx,g(x)=cosx\Rightarrow f'(x)=cosx,g'(x)=-sinx\neq 0\forall x\in \left [ \alpha ,\beta \right ]


By Cauchy's Mean Value theorem there exists θ(α,β)\theta \in \left ( \alpha ,\beta \right ) so that

f(β)f(α)g(β)g(α)=f(θ)g(θ)\frac{f(\beta )-f(\alpha )}{g(\beta )-g(\alpha )}=\frac{f'(\theta )}{g'(\theta )}

sinβsinαcosβcosα=cosθsinθ\Rightarrow \frac{sin\beta -sin\alpha }{cos\beta -cos\alpha }=\frac{cos\theta }{-sin\theta }

cosβcosαsinβsinα=sinθcosθ\Rightarrow \frac{cos\beta -cos\alpha }{sin\beta -sin\alpha }=-\frac{sin\theta }{cos\theta }

cosβcosαsinβsinα=tanθ\Rightarrow \frac{cos\beta -cos\alpha }{sin\beta -sin\alpha }=-tan\theta

cosαcosβsinαsinβ=tanθ\Rightarrow \frac{cos\alpha -cos\beta }{sin\alpha -sin\beta }=-tan\theta

Therefore

cosαcosβsinαsinβ=tanθ\Rightarrow \frac{cos\alpha -cos\beta }{sin\alpha -sin\beta }=-tan\theta


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS