1) Let x , y ∈ I x, y\in\sqrt{I} x , y ∈ I . There exist n , m ∈ N n,m\in \mathbb{N} n , m ∈ N such that x n , y m ∈ I x^n,y^m\in I x n , y m ∈ I . Then, ( x + y ) n + m = ∑ k = 0 n + m ( n + m k ) x k y n + m − k = y m ∑ k = 0 n ( n + m k ) x k y n − k + x n ∑ k = n + 1 n + m ( n + m k ) x k − n y n + m − k ∈ I (x+y)^{n+m}=\sum\limits_{k=0}^{n+m}\binom{n+m}{k}x^ky^{n+m-k}=y^m\sum\limits_{k=0}^{n}\binom{n+m}{k}x^ky^{n-k}+x^n\sum\limits_{k=n+1}^{n+m}\binom{n+m}{k}x^{k-n}y^{n+m-k}\in I ( x + y ) n + m = k = 0 ∑ n + m ( k n + m ) x k y n + m − k = y m k = 0 ∑ n ( k n + m ) x k y n − k + x n k = n + 1 ∑ n + m ( k n + m ) x k − n y n + m − k ∈ I
Hence ( x + y ) ∈ I (x+y)\in \sqrt{I} ( x + y ) ∈ I
For any a ∈ R ( a x ) n = a n x n ∈ I a\in R\ (ax)^n=a^nx^n\in I a ∈ R ( a x ) n = a n x n ∈ I , hence a x ∈ I ax\in \sqrt{I} a x ∈ I
Therefore, I \sqrt{I} I is an ideal.
2) ∀ x ∈ I ∀ n ∈ N x x n ∈ I \forall x\in I\,\forall n\in\mathbb{N}x\, x^n\in I ∀ x ∈ I ∀ n ∈ N x x n ∈ I , hence x ∈ I x\in \sqrt{I} x ∈ I and I ⊂ I I\subset \sqrt{I} I ⊂ I .
3) Let R = Z R=\mathbb{Z} R = Z , I = ( 4 ) I=(4) I = ( 4 ) , I = { x ∈ Z : ∃ n ∈ N 4 ∣ x n } = { x ∈ Z : 2 ∣ x } = ( 2 ) \sqrt{I}=\{x\in \mathbb{Z}: \exists n\in\mathbb{N}\ 4|x^n\}=\{x\in \mathbb{Z}: 2|x\}=(2) I = { x ∈ Z : ∃ n ∈ N 4∣ x n } = { x ∈ Z : 2∣ x } = ( 2 ) . So, I ≠ I I\ne\sqrt{I} I = I .
4) R / I × R / J = ( R × R ) / ( I × J ) R/I\times R/J=(R\times R)/(I\times J) R / I × R / J = ( R × R ) / ( I × J )
Indeed, I × J I\times J I × J is an ideal in R × R R\times R R × R :
∀ i 1 , i 2 ∈ I ∀ j 1 , j 2 ∈ J i 1 + i 2 ∈ I , j 1 + j 2 ∈ J \forall i_1,i_2\in I \forall j_1,j_2\in J\ i_1+i_2\in I, j_1+j_2\in J ∀ i 1 , i 2 ∈ I ∀ j 1 , j 2 ∈ J i 1 + i 2 ∈ I , j 1 + j 2 ∈ J , hence ( i 1 + i 2 , j 1 + j 2 ) ∈ I × J (i_1+i_2,j_1+j_2)\in I\times J ( i 1 + i 2 , j 1 + j 2 ) ∈ I × J
∀ ( i , j ) ∈ I × J ∀ ( a , b ) ∈ R × R a i ∈ I , b j ∈ J , ( a i , b j ) ∈ I × J \forall (i,j)\in I\times J\ \forall (a,b)\in R\times R\ ai\in I,\ bj\in J,\ (ai,bj)\in I\times J ∀ ( i , j ) ∈ I × J ∀ ( a , b ) ∈ R × R ai ∈ I , bj ∈ J , ( ai , bj ) ∈ I × J
Define f : R / I × R / J → ( R × R ) / ( I × J ) f:R/I\times R/J\to(R\times R)/(I\times J) f : R / I × R / J → ( R × R ) / ( I × J ) by the formula f ( x + I , y + J ) = ( x , y ) + ( I × J ) f(x+I,y+J)=(x,y)+(I\times J) f ( x + I , y + J ) = ( x , y ) + ( I × J )
This definition is correct, since if x 1 − x 2 = i ∈ I x_1-x_2=i\in I x 1 − x 2 = i ∈ I and y 1 − y 2 = j ∈ J y_1-y_2=j\in J y 1 − y 2 = j ∈ J then
f ( x 1 , y 1 ) = f ( x 2 + i , y 2 + j ) = ( x 2 + i , y 2 + j ) + ( I × J ) = ( x 2 , y 2 ) + ( I × J ) = f ( x 2 , y 2 ) f(x_1,y_1)=f(x_2+i,y_2+j)=(x_2+i,y_2+j)+(I\times J)=(x_2,y_2)+(I\times J)=f(x_2,y_2) f ( x 1 , y 1 ) = f ( x 2 + i , y 2 + j ) = ( x 2 + i , y 2 + j ) + ( I × J ) = ( x 2 , y 2 ) + ( I × J ) = f ( x 2 , y 2 )
Since I , J I,J I , J are ideals in R R R , and I × J I\times J I × J is an ideal in R × R R\times R R × R , we have
f ( x 1 + x 2 + I , y 1 + y 2 + J ) = ( x 1 , y 1 ) + ( x 2 , y 2 ) + ( I × J ) = f ( x 1 + I , y 1 + J ) + f ( x 2 + I , y 2 + J ) f(x_1+x_2+I,y_1+y_2+J)=(x_1,y_1)+(x_2,y_2)+(I\times J)=f(x_1+I,y_1+J) + f(x_2+I,y_2+J) f ( x 1 + x 2 + I , y 1 + y 2 + J ) = ( x 1 , y 1 ) + ( x 2 , y 2 ) + ( I × J ) = f ( x 1 + I , y 1 + J ) + f ( x 2 + I , y 2 + J )
f ( a x + I , b y + J ) = ( a x , b y ) + ( I × J ) = ( a , b ) f ( x , y ) f(ax+I,by+J)=(ax, by)+(I\times J)=(a,b)f(x,y) f ( a x + I , b y + J ) = ( a x , b y ) + ( I × J ) = ( a , b ) f ( x , y )
therefore, f is homomorphism.
f is surjective, since for any class ( x , y ) + I × J ∈ R × R / ( I × J ) (x,y)+I\times J\in R\times R/(I\times J) ( x , y ) + I × J ∈ R × R / ( I × J ) we have ( x , y ) + I × J = f ( x + I , y + J ) (x,y)+I\times J=f(x+I,y+J) ( x , y ) + I × J = f ( x + I , y + J )
f is injective, since if f ( x + I , y + J ) = ( 0 , 0 ) + ( I × J ) f(x+I,y+J)=(0,0)+(I\times J) f ( x + I , y + J ) = ( 0 , 0 ) + ( I × J ) , then x ∈ I x\in I x ∈ I and y ∈ J y\in J y ∈ J and ( x + I , y + J ) = ( 0 + I , 0 + J ) (x+I,y+J)=(0+I,0+J) ( x + I , y + J ) = ( 0 + I , 0 + J ) is zero in f : R / I × R / J f:R/I\times R/J f : R / I × R / J .
Therefore, f is an isomorphism.
Comments