Answer to Question #183510 in Abstract Algebra for Anand

Question #183510

Find all the units of Z[ √-7].


1
Expert's answer
2021-04-28T16:32:05-0400

Let x,y \in Z[-7]

Then x has the form a+b7\sqrt{-7} and y has the form c+d7\sqrt{-7} for arbitrary x and y.

If(a+b7)(c+d7)=1,then(ab7)(cd7)=1,so1=(a+b7)(c+d7)(ab7)(cd7)=1which gives1=(a2+7b2)(c2+7d2)So,b=d=0,and1=a2c2,so eithera=c=1,or,a=c=1and these are the only units inZ7If\\ (a+b\sqrt{-7})(c+d\sqrt{-7})=1 , then\\ (a-b\sqrt{-7})(c-d\sqrt{-7})=1, so 1=(a+b\sqrt{-7})(c+d\sqrt{-7})(a-b\sqrt{-7})(c-d\sqrt{-7})=1\\ \text{which gives}\\ 1=(a^2+7b^2)(c^2+7d^2)\\ So,\\ b=d=0,and \\ 1=a^2c^2,\\ \text{so either}\\ a=c=1, or, a=c=-1\\ \text{and these are the only units in}Z\sqrt{-7}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment