Prove or disprove: the set of diagonal n × n matrices with no zeroes on the diagonal is a subgroup of
GL(n,R)
"Solution: ~ Consider, the ~set~S~of ~the ~nXn~diagonal ~matrices ~ with ~ real ~ entries~\n\\\\with ~ no ~ zeros ~ on ~ the ~diagoal~.\n\\\\Given ~ A=[a_{ij}]~ in ~S, Since ~ the~ determinant~ of~ a ~ diagonal ~ matrix ~ is ~ the ~ product ~\n\\\\~ of ~ its ~diagonal ~ entries~ and ~ a_{ii}~\\neq 0 ~for ~ all ~ 1\\leq i \\leq n~\n\\\\ we ~have ~have ~that\n~ det(A)=a_{11}a_{22}....a_{nn} \\neq 0~which ~ gives ~ us ~that ~ A \\in GL(n, R) .\n\\\\Hence ~S ~ \\subset ~GL(n, R) .\n\\\\Given~ A=[a_{ij}]~ and~ B=[b_{ij}]~~ in ~S ~ we ~have ~that~ A ~and ~B~ are ~ both~ diagonal ~ \\\\matrices~ with ~ real ~ entries~ with ~ no ~zeros~ on ~ the ~ diagonal ~ which ~ gives~ us ~ that \n\\\\AB=[a_{ij}b_{ij}].\n\\\\Since~ a_{ii} \\neq 0 ~and~ b_{ii} \\neq0~ for ~ all~ 1 \\leq i \\leq n, We ~ have ~ that ~ a_{ii}b_{ii} \\neq0~ for ~ all~ 1 \\leq i \\leq n ~ and ~ therefore ~ AB \\in S\n\\\\Since ~ I_n ~ is ~ a ~ diagonal ~ matrix ~ with~ no ~zeros~ on~ its ~ diagonal ~ we ~ have ~ that ~ I_n \\in S.\n\\\\Given~ A=[a_{ij}]~in ~ S~ we ~ have ~ that ~ B=A^{-1}~ is ~ also ~ a ~ diagonal ~ matrix ~ with ~ real ~ \\\\entries~such~ that ~ b_{ii}=a_{ii}^{-1}~ for ~ all ~1 \\leq i \\leq n.Thus ~ since ~ a_{ii} \\neq 0~for ~ all~1 \\leq i \\leq n,\\\\we ~ have ~ that ~ b_{ii}\\neq 0 ~for~ all~ 1 \\leq i \\leq n~ and ~ therefore ~ A^{-1} \\in S.\n\\\\Hence ~S ~ is ~ a ~ subgroup ~ of ~ GL(n,R).\n\\\\Hence~the~ set ~ of ~the ~diagonal ~nXn~matrices ~ with ~ real ~ entries~\n\\\\with ~ no ~ zeros ~ on ~ the ~diagoal~is ~ a ~subgroup~ of~GL(n,R).\n\\\\Hence ~ proved."
Comments
Leave a comment