Question #163217

Let S be the set of all real numbers except −1. Define * on S by


a * b = a + b + ab


Show that〈 S,*〉is a group and solve 2 * x * 3 = 7 in S



.



1
Expert's answer
2021-02-19T15:21:20-0500

Given that a1,b1Ra \neq-1, b \neq -1 \in \mathbb{R} , we know that (R,+)(\mathbb{R},+) and (R,.)(\mathbb{R},.) are groups. Hence SS is closed.

Next, we show that S is associative

Let a,b,cSa,b, c \in S

Consider (ab)c=(a+b+ab)c=a+b+ab+c+(a+b+ab)c(a*b)*c = (a+b+ab)*c = a+b+ab + c + (a+b+ab)c

=a+b+c+ab+ac+bc+abc=a+ab+ac+abc+b+c+bc=a+a(b+c+bc)+(b+c+bc)= a+b+c +ab +ac + bc +abc= a+ab+ac+abc +b+c+bc = a + a(b+c+bc) + (b+c+bc)

=a+a(bc)+(bc)=a+(bc)+a(bc)=a(bc)=a+ a(b*c) + (b*c) = a + (b*c) + a(b*c) = a*(b*c)

Next we show that S has an identity element. Inorder to do this, we suppose there is an eS ae=ae \in S ~ \ni a*e =a i.e a+e+ae=a    e+ae=0    e(1+a)=0a + e +ae = a \\ \implies e +ae = 0\\ \implies e(1+a)=0

Either e=0e =0 or 1+a=01+a = 0

If 1+a=01+a =0 ,then aSe=0a \notin S \therefore e= 0

(Since (R,+)(\mathcal{R},+) and (R,.)(\mathcal{R}, .) are Abelian groups, we have that

ae=a=ea)a*e=a=e*a)

Next we show that every non zero element of SS has an inverse.

Let a,bSa,b \in S

Consider,

a+b+ab=e=0b+ab=ab(1+a)=ab=a1+aa+b+ab =e=0\\ b+ab = -a\\ b(1+a) = -a\\ b = \frac{-a}{1+a}

By definition of elements of S,S, we have that a1a\neq -1 . Hence for every non-zero aSa\in S , a1=a1+aa^{-1} = \frac{-a}{1+a}

Hence S,\langle S, * \rangle is a group

(2x)3=7(2+x+2x)3=7(2+3x)3=72+3x+3+(2+3x)3=75+3x+6+9x=712x=71112x=4x=412x=13(2*x)*3 = 7\\ (2+x+2x)*3 =7\\ (2+3x)*3=7\\ 2+3x +3+(2+3x)3 = 7\\ 5+ 3x + 6 + 9x =7\\12x = 7-11\\ 12x = -4 \\ x = \frac{-4}{12}\\ x = \frac{-1}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS