Show that equivalence modulo n in Z+ is an equivalence relation.
Solution:
To show: Congruence modulo in Z is an equivalence relation.
Reflexive:
Given, equal numbers are congruent.
"\\forall x, y, z \\in \\mathbb{Z}: x=y \\Longrightarrow x \\equiv y(\\bmod z)"
so it implies that:
"\\forall x \\in \\mathbb{Z}: x \\equiv x(\\bmod z)"
and so congruence modulo z is reflexive.
Symmetric:
"\\begin{aligned}\nx & \\equiv y \\bmod z \\\\\n\\Rightarrow \\quad x-y &=k z \\\\\n\\Rightarrow \\quad y-x &=(-k) z \\\\\n\\Rightarrow y & \\equiv x \\bmod z\n\\end{aligned}"
So congruence modulo z is symmetric.
Transitive:
"\\begin{aligned}\nx_{1} & \\equiv x_{2} \\quad(\\bmod z) \\\\\nx_{2} & \\equiv x_{3} \\quad(\\bmod z) \\\\\n\\left(x_{1}-x_{2}\\right) &=k_{1} z\n\\end{aligned}"
"\\begin{aligned}\n\\wedge &\\left(x_{2}-x_{3}\\right)=k_{2} z \\\\\n\\Rightarrow &\\left(x_{1}-x_{2}\\right)+\\left(x_{2}-x_{3}\\right)=\\left(k_{1}+k_{2}\\right) z \\\\\n\\Rightarrow &\\left(x_{1}-x_{3}\\right)=\\left(k_{1}+k_{2}\\right) z\n\\end{aligned}\nx_{1} \\equiv x_{3} \\quad(\\bmod z)"
"\\Rightarrow x_{1} \\equiv x_{3} \\quad(\\bmod z)"
So congruence modulo z is transitive.
Thus, it is an equivalence relation.
Hence, proved.
Comments
Leave a comment