Question #159677

Show that equivalence modulo n in Z+ is an equivalence relation.


1
Expert's answer
2021-02-01T19:03:58-0500

Solution:

To show: Congruence modulo in Z is an equivalence relation.

Reflexive:

Given, equal numbers are congruent.

x,y,zZ:x=yxy(modz)\forall x, y, z \in \mathbb{Z}: x=y \Longrightarrow x \equiv y(\bmod z)

so it implies that:

xZ:xx(modz)\forall x \in \mathbb{Z}: x \equiv x(\bmod z)

and so congruence modulo z is reflexive.

Symmetric:

xymodzxy=kzyx=(k)zyxmodz\begin{aligned} x & \equiv y \bmod z \\ \Rightarrow \quad x-y &=k z \\ \Rightarrow \quad y-x &=(-k) z \\ \Rightarrow y & \equiv x \bmod z \end{aligned}

So congruence modulo z is symmetric.

Transitive:

x1x2(modz)x2x3(modz)(x1x2)=k1z\begin{aligned} x_{1} & \equiv x_{2} \quad(\bmod z) \\ x_{2} & \equiv x_{3} \quad(\bmod z) \\ \left(x_{1}-x_{2}\right) &=k_{1} z \end{aligned}

(x2x3)=k2z(x1x2)+(x2x3)=(k1+k2)z(x1x3)=(k1+k2)zx1x3(modz)\begin{aligned} \wedge &\left(x_{2}-x_{3}\right)=k_{2} z \\ \Rightarrow &\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)=\left(k_{1}+k_{2}\right) z \\ \Rightarrow &\left(x_{1}-x_{3}\right)=\left(k_{1}+k_{2}\right) z \end{aligned} x_{1} \equiv x_{3} \quad(\bmod z)

x1x3(modz)\Rightarrow x_{1} \equiv x_{3} \quad(\bmod z)

So congruence modulo z is transitive.

Thus, it is an equivalence relation.

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS