Find a maximal ideal of R [x] containing
the ideal <x²— 1, x³— 1>
"Solution: ~As~ x\u00b2-1 = (x-1)(x+1) ~and ~x\u00b3-1=(x-1)(x\u00b2+x+1), ~\\\\the ~ideal ~J = <x-1> ~contains ~every ~element ~of~ the ~given~ ideal~ which~ are ~\\\\of~ the~ form\n\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)(x\u00b2-1)+g(x)(x\u00b3-1),\n\n\\\\where ~f(x) ~and ~g(x)~ are~ polynomials ~in ~R[x],~ because ~the ~above ~can ~be ~written~ as~\n\n\\\\(x-1)[(x+1)f(x)+(x\u00b2+x+1)g(x)].\n\n\\\\Also~ the~ ideal~ <x-1>~ is~ a~ maximal~ ideal~ because~ if~ any~ ideal~ I ~properly~ \\\\contains~ J,~ then~ take~ any ~polynomial ~p(x)~ in ~I \\notin~ J. \\\\By ~the~ Division~ algorithm ~in~ R[x], ~we ~can~ find~ polynomials~ q(x)~ and~ r(x)~ such~that\n\n\\\\p(x)=q(x-1)+r(x), ~with ~deg(r(x))<deg(x-1)=1 \\\\ \\Rightarrow ~ r(x)=0,~ or~ r(x)~ is ~a ~non~zero~ constant. \\\\But~ r(x) = p(x) - q(x)(x-1)~ is~ in~ I,~ and ~if ~the~ ideal ~I~ contains~ a~ nonzero~ \\\\constant~ r, ~then~ as ~the~ inverse ~of~ r~ belongs~ to ~the~ field ~R ~and~ hence ~\\\\1 ~will~ belong~ to~ I ~\\\\ \\Rightarrow I=R.\n\n\\\\ \\therefore~ J = <x-1>~ is~a ~maximal ~ideal ~and ~hence~ it~ is~ the~ maximal ~ideal ~containing ~\\\\<x\u00b2-1, x\u00b3-1>."
Comments
Leave a comment