Question #155733

— If m1, m2 belongs to the same orbit then St(m1) and St(m2) are conjugate to each other if m2=p(g)m1 then St(m2)=gSt(m1) g ...


1
Expert's answer
2021-01-17T17:52:04-0500

As m1,m2m_1,m_2 are in the same orbit, g,m2=ρ(g)m1\exists g , m_2=\rho(g)m_1. We can also note that m1=ρ(g1)m2m_1=\rho(g^{-1})m_2, so to prove that Stab(m2)=gStab(m1)g1Stab(m_2)= gStab(m_1)g^{-1} it is enough to prove that gStab(m1)g1Stab(m2)gStab(m_1)g^{-1} \subset Stab(m_2) as the other inclusion can be obtained just by changing the roles of m1m_1 and m2m_2 and replacing gg by g1g^{-1}. Suppose xStab(m1)x\in Stab(m_1), now let's apply ρ(gxg1)\rho(gxg^{-1}) to m2m_2 :

ρ(gxg1)m2=ρ(g)ρ(x)ρ(g1)m2=ρ(g)ρ(x)m1=ρ(g)m1=m2\rho(gxg^{-1})m_2 = \rho(g)\rho(x)\rho(g^{-1})m_2 =\rho(g)\rho(x) m_1=\rho(g)m_1=m_2. Therefore gxg1Stab(m2)gxg^{-1}\in Stab(m_2) and we have gStab(m1)g1Stab(m2)gStab(m_1)g^{-1}\subset Stab(m_2). Now let's take an element yStab(m2)y \in Stab(m_2). To prove that ygStab(m1)g1y\in gStab(m_1)g^{-1} we need to prove that g1ygStab(m1)g^{-1}yg \in Stab(m_1). We verify it directly :

ρ(g1yg)m1=ρ(g1)ρ(y)ρ(g)m1=ρ(g1)ρ(y)m2=ρ(g1)m2=m1\rho(g^{-1}yg) m_1 =\rho(g^{-1}) \rho(y)\rho(g)m_1 =\rho(g^{-1})\rho(y) m_2=\rho(g^{-1})m_2=m_1. Thus g1ygStab(m1)g^{-1}yg\in Stab(m_1), so g1Stab(m2)gStab(m1);Stab(m2)gStab(m1)g1g^{-1}Stab(m_2)g \subset Stab(m_1); Stab(m_2)\subset gStab(m_1)g^{-1}. Therefore we have Stab(m2)=gStab(m1)g1Stab(m_2)=gStab(m_1)g^{-1}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS