S=R/{−1}
x+y=x+y+xy,x,y∈S
1.
∀x,y∈S⟹(x+y+xy)∈R/{1}
2.
∀x,y,z∈S(x+y)+z=x+(y+z)(x+y)+z=(x+y+xy)+z=x+y+xy++z+(x+y+xy)z==x+y+z+xy+xz+yz+xyzx+(y+z)=x+(y+z+yz)=x+y+z++yz+x(y+z+yz)==x+y+z+xy+xz+yz+xyz
3.
∃0∈S∀x∈S:x+0=xx+0=x+0+x⋅0=x
4.
∀x∈S∃y∈S:x+y=0x+y+xy=0y(1+x)=−xy=1−x−x∈S(x=0)
5.
∀x,y∈Sx+y=y+xx+y=x+y+xyy+x=y+x+yx
<S,+> is an abelian group.
1+x=21+x=1+x+1⋅x1+x+x=22x=1x=21∈S
Comments