Question #145985
Let S be the set of all real numbers except
—1. Define an operation + on S by
x+y=x+y+xy; x,y belongs to S. Show that
< S, +> is an abelian group. Find a solution
of the equation 1+x = 2 in S.
1
Expert's answer
2020-11-24T05:24:28-0500

S=R/{1}S=R/\{-1\}

x+y=x+y+xy,x,ySx+y=x+y+xy, x,y\in S

1.

x,yS    (x+y+xy)R/{1}\forall x,y\in S\implies (x+y+xy)\in R/\{1\}

2.

x,y,zS(x+y)+z=x+(y+z)(x+y)+z=(x+y+xy)+z=x+y+xy++z+(x+y+xy)z==x+y+z+xy+xz+yz+xyzx+(y+z)=x+(y+z+yz)=x+y+z++yz+x(y+z+yz)==x+y+z+xy+xz+yz+xyz\forall x,y,z\in S\\ (x+y)+z=x+(y+z)\\ (x+y)+z=(x+y+xy)+z=x+y+xy+\\ +z+(x+y+xy)z=\\=x+y+z+xy+xz+yz+xyz\\ x+(y+z)=x+(y+z+yz)=x+y+z+\\ +yz+x(y+z+yz)=\\=x+y+z+xy+xz+yz+xyz

3.

0SxS:x+0=xx+0=x+0+x0=x\exist0\in S\forall x\in S:x+0=x\\ x+0=x+0+x\cdot0=x

4.

xSyS:x+y=0x+y+xy=0y(1+x)=xy=x1xS(x0)\forall x\in S\exist y\in S: x+y=0\\ x+y+xy=0\\ y(1+x)=-x\\ y=\frac{-x}{1-x}\in S (x\neq 0)

5.

x,ySx+y=y+xx+y=x+y+xyy+x=y+x+yx\forall x,y\in S\\ x+y=y+x\\ x+y=x+y+xy\\ y+x=y+x+yx

<S,+><S,+> is an abelian group.


1+x=21+x=1+x+1x1+x+x=22x=1x=12S1+x=2\\ 1+x=1+x+1\cdot x\\ 1+x+x=2\\ 2x=1\\ x=\frac{1}{2}\in S



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS