Let f(x),g(x)∈Q[x]
Then there exists q(x) and r(x)∈Q[x] such that f(x)=g(x)q(x)+r(x) where either r(x)=0 or deg(r)<deg(g). (Since Q is a field, division algorithm holds in Q[x])
When r=0 , deg(r)<deg(g) ⇒ 2deg(r) <2deg(g) ⇒d(r)<d(g)
We also note d(fg)=2deg(fg)=2deg(f)+deg(g)=2deg(f)2deg(g)=d(f)d(g)
Hence d is an Euclidean evaluation.
Comments