Question #131515
Let X be a non-empty set. Define the set Z to be the collection of all subsets of X. Consider the binary operation “union” in the set Z, that is, for A and B that are subsets of X, let
A*B=A∪B

Determine which of the properties of the binary operation is/are satisfied in Z under *.
1
Expert's answer
2020-09-07T18:46:30-0400
SolutionSolution

a. ) Commutative Properties:  The Commutative Property for Union and the Commutative Property for binary operation (*) says that the order of the sets in which we do the operation does not change the result.


A  B=A  B,   A ,B  Z  equation (I)But A  B=A  B  A, B Za. Commutative LawAB=BALHS     AB=A B=B  A=BA LHS=RHSHence Z follows binary property of commutative propertyA\ *\ B=A\ \cup\ B,\ \forall\ \ A\ ,B\ \in\ Z\ -----\ equation\ (I)\\ But\ A\ \cdot\ B=A\ \cup\ B\ \forall\ A,\ B\in\ Z\\ a.\ Commutative\ Law\\ A \cdot B=B \cdot A\\ LHS\implies\ A \cdot B=A\ \cup B=B\ \cup\ A=B \cdot A\\ \therefore\ LHS=RHS\\ Hence\ Z\ follows\ binary\ property\ of\ commutative\ property\\

b. ) Associative Properties:  The Associative Property for Union and the Commutative Property for binary operation (*) says that how the sets are grouped does not change the result.


General property: (AB)C=A(BC)LHS     (AB)C=(AB)CNow RHS     A(BC)=A(BC)As per equation (I)=A(BC)=A(BC)Hence Z follows binary property of Associative propertyGeneral\ property:\ (A \cdot B) \cdot C=A \cdot (B \cdot C)\\ LHS\\ \implies\ (A \cdot B) \cdot C=(A \cup B) \cup C\\ Now\ RHS\implies\ A \cdot (B \cdot C)=A \cup (B \cup C)\\ As\ per\ equation\ (I)\,\\ =A \cup (B \cup C)=A \cdot(B \cdot C)\\ Hence\ Z\ follows\ binary\ property\ of\ Associative\ property\\

c. ) Distributive Properties: The Distributive Property of Union over the binary operation * show two ways of finding results for certain problems mixing the set operations of union binary operation (*)

General property: A(BC)=(AB)(AC) and A(BC)=(AB)(AC)Hence Z follows binary property of Distributive property.General\ property:\ A \cup (B \cdot C)= (A \cup B) \cdot (A \cup C)\ and\ A \cdot (B \cup C)= (A \cdot B) \cup (A \cdot C)\\ Hence\ Z\ follows\ binary\ property\ of\ Distributive\ property.\\

Hence proof: Under Z it will follow commutative, associative and distributive properties.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS