G=D8={e,a,a2,a3,x,ax≡xa3,a2x,a3x≡xa}a — rotation by angle of π/2 counterclockwisex — reflection about the diagonal joining vertices "2" and "4"ax — reflection about the line joining midpoints of opposite sides "14" and "23"a2x — reflection about the diagonal joining vertices "1" and "3"a3x — reflection about the line joining midpoints of opposite sides "12" and "34"N={e,a2,a4≡e,a6≡a2}={e,a2} — subgroup of G(a) Left cosets:1)e∈GeN≡N2)a∈GaN={a,a3}3)a2∈Ga2N={a2,a4}4)a3∈Ga3N={a3,a5≡a}5)x∈GxN={x,xa2≡a2x}6)ax∈G(ax)N={ax,(ax)a2≡(xa3)a2≡x(a3a2)≡xa}7)a2x∈G(a2x)N={a2x,(a2x)a2≡(xa2)a2≡x(a2a2)≡x}8)xa∈G(xa)N={xa,(xa)a2≡xa3≡ax}Right cosets:1)e∈GNe≡N2)a∈GNa={a,a3}3)a2∈GNa2={a2,a4}4)a3∈GNa3={a3,a5≡a}5)x∈GNx={x,a2x}6)ax∈GN(ax)={ax,a2(ax)≡(a2a)x≡xa}7)a2x∈GN(a2x)={a2x,a2(a2x)≡x}8)xa∈GN(xa)={xa,a2(xa)≡a2(a3x)≡ax}We can see that the corresponding left and rightcosets are equal. So using the criterion of a normalsubgroup we can conclude that N is a normalsubgroup of G.(b)G/N has order ∣N∣∣G∣=28=4 (using Lagrange’s theorem)G/N is a group of all the left cosets G/N is not cyclic because there is no element a such that gN=ai
Comments