Question #128940
Let G=D_8, and let N={e,a^2,a^4,a^6}.
(a) Find all left cosets and all right cosets of N, and verify that N is a normal subgroup of G.
(b) Show that G/N has order 4, but is not cyclic.
1
Expert's answer
2020-08-10T15:38:22-0400

G=D8={e,a,a2,a3,x,axxa3,a2x,a3xxa}a — rotation by angle of π/2 counterclockwisex — reflection about the diagonal joining vertices "2" and "4"ax — reflection about the line joining midpoints of opposite sides "14" and "23"a2x — reflection about the diagonal joining vertices "1" and "3"a3x — reflection about the line joining midpoints of opposite sides "12" and "34"N={e,a2,a4e,a6a2}={e,a2} — subgroup of G(a) Left cosets:1)eGeNN2)aGaN={a,a3}3)a2Ga2N={a2,a4}4)a3Ga3N={a3,a5a}5)xGxN={x,xa2a2x}6)axG(ax)N={ax,(ax)a2(xa3)a2x(a3a2)xa}7)a2xG(a2x)N={a2x,(a2x)a2(xa2)a2x(a2a2)x}8)xaG(xa)N={xa,(xa)a2xa3ax}Right cosets:1)eGNeN2)aGNa={a,a3}3)a2GNa2={a2,a4}4)a3GNa3={a3,a5a}5)xGNx={x,a2x}6)axGN(ax)={ax,a2(ax)(a2a)xxa}7)a2xGN(a2x)={a2x,a2(a2x)x}8)xaGN(xa)={xa,a2(xa)a2(a3x)ax}We can see that the corresponding left and rightcosets are equal. So using the criterion of a normalsubgroup we can conclude that N is a normalsubgroup of G.(b)G/N has order GN=82=4 (using Lagrange’s theorem)G/N is a group of all the left cosets G/N is not cyclic because there is no element a such that gN=aiG=D_8=\{e, a, a^2, a^3, x, ax\equiv xa^3, a^2x, a^3x\equiv xa\}\\ a\text{ --- rotation by angle of }\pi/2\text{ counterclockwise}\\ x\text{ --- reflection about the diagonal joining vertices "2" and "4"}\\ ax\text{ --- reflection about the line joining midpoints of }\\ \text{opposite sides "14" and "23"}\\ a^2x\text{ --- reflection about the diagonal joining vertices "1" and "3"}\\ a^3x\text{ --- reflection about the line joining midpoints of }\\ \text{opposite sides "12" and "34"}\\ N=\{e, a^2, a^4\equiv e, a^6\equiv a^2\}=\{e, a^2\}\text{ --- }\\ \text{subgroup of G}\\ (a)\text{ Left cosets:}\\ 1) e\in G\\ eN\equiv N\\ 2) a\in G\\ aN=\{a, a^3\}\\ 3) a^2\in G\\ a^2N=\{a^2, a^4\}\\ 4) a^3\in G\\ a^3N=\{a^3, a^5\equiv a\}\\ 5) x\in G\\ xN=\{x, xa^2\equiv a^2x\}\\ 6) ax\in G\\ (ax)N=\{ax, (ax)a^2\equiv (xa^3)a^2\equiv x(a^3a^2)\equiv xa\}\\ 7) a^2x\in G\\ (a^2x)N=\{a^2x, (a^2x)a^2\equiv (xa^2)a^2\equiv x(a^2a^2)\equiv x\}\\ 8) xa\in G\\ (xa)N=\{xa, (xa)a^2\equiv xa^3\equiv ax\}\\ \text{Right cosets:}\\ 1) e\in G\\ Ne\equiv N\\ 2) a\in G\\ Na=\{a, a^3\}\\ 3) a^2\in G\\ Na^2=\{a^2, a^4\}\\ 4) a^3\in G\\ Na^3=\{a^3, a^5\equiv a\}\\ 5) x\in G\\ Nx=\{x, a^2x\}\\ 6) ax\in G\\ N(ax)=\{ax, a^2(ax)\equiv (a^2a)x\equiv xa\}\\ 7) a^2x\in G\\ N(a^2x)=\{a^2x, a^2(a^2x)\equiv x\}\\ 8) xa\in G\\ N(xa)=\{xa, a^2(xa)\equiv a^2(a^3x)\equiv ax\}\\ \text{We can see that the corresponding left and right}\\ \text{cosets are equal. So using the criterion of a normal}\\ \text{subgroup we can conclude that }N\text{ is a normal}\\ \text{subgroup of G}.\\ (b) G/N \text{ has order } \frac{|G|}{|N|}=\frac{8}{2}=4 \text{ (using Lagrange's theorem)}\\ G/N \text{ is a group of all the left cosets }\\ G/N \text{ is not cyclic because there is no element } a \text{ such that } gN=a^i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS