"\\begin{pmatrix}a&a+b\\\\a+b&b\\end{pmatrix} \\begin{pmatrix}m&m+n\\\\m+n&n\\end{pmatrix} ="
"=\\begin{pmatrix}am+(a+b)(m+n)&a(m+n)+(a+b)n\\\\m(a+b)+b(m+n)&(m+n)(a+b)+bn\\end{pmatrix}"
Off-diagonal elements
"a(m+n)+(a+b)n \\ne m(a+b)+b(m+n)"
Hence, it is not a subring because it is not closed under multiplication.
Comments
Leave a comment