(aa+ba+bb)(mm+nm+nn)=\begin{pmatrix}a&a+b\\a+b&b\end{pmatrix} \begin{pmatrix}m&m+n\\m+n&n\end{pmatrix} =(aa+ba+bb)(mm+nm+nn)=
=(am+(a+b)(m+n)a(m+n)+(a+b)nm(a+b)+b(m+n)(m+n)(a+b)+bn)=\begin{pmatrix}am+(a+b)(m+n)&a(m+n)+(a+b)n\\m(a+b)+b(m+n)&(m+n)(a+b)+bn\end{pmatrix}=(am+(a+b)(m+n)m(a+b)+b(m+n)a(m+n)+(a+b)n(m+n)(a+b)+bn)
Off-diagonal elements
a(m+n)+(a+b)n≠m(a+b)+b(m+n)a(m+n)+(a+b)n \ne m(a+b)+b(m+n)a(m+n)+(a+b)n=m(a+b)+b(m+n)
Hence, it is not a subring because it is not closed under multiplication.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments