Z4−1=0Z4=1Z4=e2πnn=0,1,2,3Z=e2πn4n=0,1,2,3Z^4-1=0\\ Z^4=1\\ Z^4=e^{2\pi n}\quad n=0,1,2,3\\ Z=e^{\frac{2\pi n}{4}}\quad n=0,1,2,3\\Z4−1=0Z4=1Z4=e2πnn=0,1,2,3Z=e42πnn=0,1,2,3
therefore,
Z1=1Z2=eπ2=jZ3=eπ=−1Z4=e3π2=−jZ_1=1 \\ Z_2=e^{\frac{\pi}{2}}=j\\ Z_3=e^{\pi}=-1\\ Z_4=e^{\frac{3\pi}{2}}=-j\\Z1=1Z2=e2π=jZ3=eπ=−1Z4=e23π=−j
A={1,j,−1,−j}={z0,z1,z2,z3},z=j.∴A=<z>={zk∣k=0,1,2,3}A=\{1,j,-1,-j\}=\{z^0,z^1,z^2,z^3\},\quad z=j.\\ \therefore A=<z>=\{z^k|k=0,1,2,3\}A={1,j,−1,−j}={z0,z1,z2,z3},z=j.∴A=<z>={zk∣k=0,1,2,3}
Therefore set A is a cyclic group of order 4.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments