Question #108187
Is R = {[a a+b
a+b b ] |a,b belongs to Z} a subring of M2(Z)? Why or why not?
1
Expert's answer
2020-04-08T11:45:35-0400

(1332)R\begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}\in R and (1221)R\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\in R, but (1332)(1221)=(7578)∉R\begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}=\begin{pmatrix} 7 & 5 \\ 7 & 8 \end{pmatrix}\not\in R. So RR is not a subring of M2(Z)M_2(\mathbb Z).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS