(1332)∈R\begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}\in R(1332)∈R and (1221)∈R\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\in R(1221)∈R, but (1332)(1221)=(7578)∉R\begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}=\begin{pmatrix} 7 & 5 \\ 7 & 8 \end{pmatrix}\not\in R(1332)(1221)=(7758)∈R. So RRR is not a subring of M2(Z)M_2(\mathbb Z)M2(Z).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments