S4S_4S4 the symmetric group of all permutations of 4 elements.
It has 4!=24 elements. For example, (12341234),(12342143)=(1,2)(3,4)\begin{pmatrix} 1 & 2&3&4 \\ 1&2&3&4 \end{pmatrix}, \begin{pmatrix} 1 & 2&3&4 \\ 2&1&4&3 \end{pmatrix}=(1,2)(3,4)(11223344),(12213443)=(1,2)(3,4) .
In our case
(12343124)=(1,3,2)(4)or(1,3,2)\begin{pmatrix} 1 & 2&3&4 \\ 3&1&2&4 \end{pmatrix}=(1,3,2)(4) or (1,3,2)(13213244)=(1,3,2)(4)or(1,3,2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments