Question #107871
There are the permutations σ=(123), τ=(12). Calculate σ(τ)=τσ (applying \tauτ first and then applying \sigmaσ)
Find the order of the element 2in the group (Z_6,+)
Find the element which belongs to the ring Z_2[x] /x^2+x+1
Let the order of element aa in the finite group be 20. Find the order of element a^6

1
Expert's answer
2020-04-06T17:49:41-0400

The given permutation are σ=(123) and τ=(12)\sigma=(123) \ and \ \tau=(12) .

σ(τ)=(123)(12)=(13)\therefore \sigma(\tau)=(123)(12)=(13) .

1. The given group is Z6\Z_6 under addition madulo 6.

We known that Z6\Z_6 is a cyclic group of order 6 generated by 1 .

i,e,Z6=<1>.\Z_6=<1>.

So, O(2)=So, \ O(2)= order of 2 =12=(1+1)=O(1)gcd(2,O(1)=6gcd(2,6)=1^2=(1+1)=\frac{O(1)}{gcd(2,O(1)}=\frac{6}{gcd(2,6)} .

O(2)=3\therefore O(2)=3 .

2. Let the given ring is

R=Z2[x]<x2+x+1>R=\frac{\Z_2[x]}{<x^2+x+1>}

 R={f(x)+<x2+x+1>:f(x)Z2[x]}\therefore \ R=\{f(x)+<x^2+x+1>:f(x)\in\Z_2[x]\}

={ax+b+<x2+x+1>:ax+bZ2[x]}=\{ax+b+<x^2+x+1>:ax+b\in\Z_2[x]\}

={0+<x2+x+1>,x+<x2+x+1>,x+1+<x2+x+1>,1+<x2+x+1>}=\{ 0+<x^2+x+1>,x+<x^2+x+1>,x+1+<x^2+x+1>,1+<x^2+x+1>\}


3. \ Let GLet \ G be a finite group and aGa\in G such that O(a)=20=O(a)=20= order of aa .

 <a>\therefore \ <a> is a cyclic subgroup of GG ,whose order is 20 and a6<a>.a^6\in<a>.

Hence ,O(a6)=O(a)gcd(6,O(a)=20gcd(6,20)=202=10.O(a^6)=\frac{O(a)}{gcd(6,O(a)}=\frac{20}{gcd(6,20)}=\frac{20}{2}=10.

Where O(a6)O(a^6) represent oder of a6a^6 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS