M 3 [ Z ] = { ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) , a i j ∈ Z } M_3[Z]=\{\begin{pmatrix}
a_{11} & a_{12}& a_{13} \\
a_{21} & a_{22}& a_{23} \\
a_{31} & a_{32}& a_{33} \\
\end{pmatrix},\\
a_{ij}\in Z\} M 3 [ Z ] = { ⎝ ⎛ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎠ ⎞ , a ij ∈ Z }
Сonsider the basis
E 11 = ( 1 0 0 0 0 0 0 0 0 ) , E 12 = ( 0 1 0 0 0 0 0 0 0 ) , E 13 = ( 0 0 1 0 0 0 0 0 0 ) , E 21 = ( 0 0 0 1 0 0 0 0 0 ) , E 22 = ( 0 0 0 0 1 0 0 0 0 ) , E 23 = ( 0 0 0 0 0 1 0 0 0 ) , E 31 = ( 0 0 0 0 0 0 1 0 0 ) , E 32 = ( 0 0 0 0 0 0 0 1 0 ) , E 33 = ( 0 0 0 0 0 0 0 0 1 ) E_{11}=\begin{pmatrix}
1 &0&0 \\
0&0&0\\
0&0&0
\end{pmatrix},
E_{12}=\begin{pmatrix}
0 &1&0 \\
0&0&0\\
0&0&0
\end{pmatrix}, \\
E_{13}=\begin{pmatrix}
0 &0&1 \\
0&0&0\\
0&0&0
\end{pmatrix}, E_{21}=\begin{pmatrix}
0&0&0 \\
1&0&0\\
0&0&0
\end{pmatrix}, \\
E_{22}=\begin{pmatrix}
0 &0&0 \\
0&1&0\\
0&0&0
\end{pmatrix}, E_{23}=\begin{pmatrix}
0 &0&0 \\
0&0&1\\
0&0&0
\end{pmatrix}, \\
E_{31}=\begin{pmatrix}
0 &0&0 \\
0&0&0\\
1&0&0
\end{pmatrix},
E_{32}=\begin{pmatrix}
0 &0&0 \\
0&0&0\\
0&1&0
\end{pmatrix}, \\
E_{33}=\begin{pmatrix}
0 &0&0 \\
0&0&0\\
0&0&1
\end{pmatrix} E 11 = ⎝ ⎛ 1 0 0 0 0 0 0 0 0 ⎠ ⎞ , E 12 = ⎝ ⎛ 0 0 0 1 0 0 0 0 0 ⎠ ⎞ , E 13 = ⎝ ⎛ 0 0 0 0 0 0 1 0 0 ⎠ ⎞ , E 21 = ⎝ ⎛ 0 1 0 0 0 0 0 0 0 ⎠ ⎞ , E 22 = ⎝ ⎛ 0 0 0 0 1 0 0 0 0 ⎠ ⎞ , E 23 = ⎝ ⎛ 0 0 0 0 0 0 0 1 0 ⎠ ⎞ , E 31 = ⎝ ⎛ 0 0 1 0 0 0 0 0 0 ⎠ ⎞ , E 32 = ⎝ ⎛ 0 0 0 0 0 1 0 0 0 ⎠ ⎞ , E 33 = ⎝ ⎛ 0 0 0 0 0 0 0 0 1 ⎠ ⎞
A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) = a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33 A=\begin{pmatrix}
a_{11} & a_{12}& a_{13} \\
a_{21} & a_{22}& a_{23} \\
a_{31} & a_{32}& a_{33} \\
\end{pmatrix}=a_{11}E_{11}+a_{12}E_{12}+\\
+a_{13}E_{13}+a_{21}E_{21}+a_{22}E_{22}+\\
+a_{23}E_{23}+a_{31}E_{31}+a_{32}E_{32}+\\
+a_{33}E_{33} A = ⎝ ⎛ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎠ ⎞ = a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33
Let's put together a Kelly table and we denote
O = ( 0 0 0 0 0 0 0 0 0 ) O=\begin{pmatrix}
0 & 0&0 \\
0 & 0&0\\
0&0&0
\end{pmatrix} O = ⎝ ⎛ 0 0 0 0 0 0 0 0 0 ⎠ ⎞
E 11 E 12 E 13 E 21 E 22 E 23 E 31 E 32 E 33 E 11 E 11 E 12 E 13 O O O O O O E 12 O O O E 11 E 12 E 13 O O O E 13 O O O O O O E 11 E 12 E 13 E 21 E 21 E 22 E 23 O O O O O O E 22 O O O E 21 E 22 E 23 O O O E 23 O O O O O O E 21 E 22 E 23 E 31 E 31 E 32 E 33 O O O O O O E 32 O O O E 31 E 32 E 33 O O O E 33 O O O O O O E 31 E 32 E 33 \begin{matrix}
&E_{11} &E_{12}&E_{13}&E_{21}&E_{22}&E_{23}&E_{31}&E_{32}&E_{33}\\
E_{11}& E_{11}&E_{12}&E_{13}&O&O&O&O&O&O\\
E_{12}& O&O&O&E_{11}&E_{12}&E_{13}&O&O&O\\
E_{13}& O&O&O&O&O&O&E_{11}&E_{12}&E_{13}\\
E_{21}& E_{21}&E_{22}&E_{23}&O&O&O&O&O&O\\
E_{22}& O&O&O&E_{21}&E_{22}&E_{23}&O&O&O\\
E_{23}& O&O&O&O&O&O&E_{21}&E_{22}&E_{23}\\
E_{31}& E_{31}&E_{32}&E_{33}&O&O&O&O&O&O\\
E_{32}& O&O&O&E_{31}&E_{32}&E_{33}&O&O&O\\
E_{33}& O&O&O&O&O&O&E_{31}&E_{32}&E_{33}
\end{matrix} E 11 E 12 E 13 E 21 E 22 E 23 E 31 E 32 E 33 E 11 E 11 O O E 21 O O E 31 O O E 12 E 12 O O E 22 O O E 32 O O E 13 E 13 O O E 23 O O E 33 O O E 21 O E 11 O O E 21 O O E 31 O E 22 O E 12 O O E 22 O O E 32 O E 23 O E 13 O O E 23 O O E 33 O E 31 O O E 11 O O E 21 O O E 31 E 32 O O E 12 O O E 22 O O E 32 E 33 O O E 13 O O E 23 O O E 33
Let's show that A 2 ≠ 0 A^2\neq0 A 2 = 0
A 2 = ( a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33 ) ( a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33 ) = = a 11 2 E 11 + a 11 a 12 E 12 + + a 11 a 13 E 13 + a 12 a 21 E 11 + a 12 a 22 E 12 + + a 12 a 23 E 13 + a 13 a 31 E 11 + a 13 a 32 E 12 + + a 13 a 33 E 13 + A^2=(a_{11}E_{11}+a_{12}E_{12}+\\
+a_{13}E_{13}+a_{21}E_{21}+a_{22}E_{22}+\\
+a_{23}E_{23}+a_{31}E_{31}+a_{32}E_{32}+\\
+a_{33}E_{33})(a_{11}E_{11}+a_{12}E_{12}+\\
+a_{13}E_{13}+a_{21}E_{21}+a_{22}E_{22}+\\
+a_{23}E_{23}+a_{31}E_{31}+a_{32}E_{32}+\\
+a_{33}E_{33})=\\
=a_{11}^2E_{11}+a_{11}a_{12}E_{12}+\\
+a_{11}a_{13}E_{13}+a_{12}a_{21}E_{11}+a_{12}a_{22}E_{12}+\\
+a_{12}a_{23}E_{13}+a_{13}a_{31}E_{11}+a_{13}a_{32}E_{12}+\\
+a_{13}a_{33}E_{13}+ A 2 = ( a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33 ) ( a 11 E 11 + a 12 E 12 + + a 13 E 13 + a 21 E 21 + a 22 E 22 + + a 23 E 23 + a 31 E 31 + a 32 E 32 + + a 33 E 33 ) = = a 11 2 E 11 + a 11 a 12 E 12 + + a 11 a 13 E 13 + a 12 a 21 E 11 + a 12 a 22 E 12 + + a 12 a 23 E 13 + a 13 a 31 E 11 + a 13 a 32 E 12 + + a 13 a 33 E 13 +
+ a 21 a 11 E 21 + a 21 a 12 E 22 + + a 21 a 13 E 23 + a 22 a 21 E 21 + a 22 2 E 22 + + a 22 a 23 E 23 + a 23 a 31 E 21 + a 23 a 32 E 22 + + a 23 a 33 E 23 + + a 31 a 11 E 31 + a 31 a 12 E 32 + + a 31 a 13 E 33 + a 32 a 21 E 31 + a 32 a 22 E 32 + + a 32 a 23 E 33 + a 33 a 31 E 31 + a 33 a 32 E 32 + + a 33 2 E 33 = +a_{21}a_{11}E_{21}+a_{21}a_{12}E_{22}+\\
+a_{21}a_{13}E_{23}+a_{22}a_{21}E_{21}+a_{22}^2E_{22}+\\
+a_{22}a_{23}E_{23}+a_{23}a_{31}E_{21}+a_{23}a_{32}E_{22}+\\
+a_{23}a_{33}E_{23}+\\
+a_{31}a_{11}E_{31}+a_{31}a_{12}E_{32}+\\
+a_{31}a_{13}E_{33}+a_{32}a_{21}E_{31}+a_{32}a_{22}E_{32}+\\
+a_{32}a_{23}E_{33}+a_{33}a_{31}E_{31}+a_{33}a_{32}E_{32}+\\
+a_{33}^2E_{33}=\\ + a 21 a 11 E 21 + a 21 a 12 E 22 + + a 21 a 13 E 23 + a 22 a 21 E 21 + a 22 2 E 22 + + a 22 a 23 E 23 + a 23 a 31 E 21 + a 23 a 32 E 22 + + a 23 a 33 E 23 + + a 31 a 11 E 31 + a 31 a 12 E 32 + + a 31 a 13 E 33 + a 32 a 21 E 31 + a 32 a 22 E 32 + + a 32 a 23 E 33 + a 33 a 31 E 31 + a 33 a 32 E 32 + + a 33 2 E 33 =
= ( a 11 2 + a 12 a 21 + a 13 a 31 ) E 11 + + ( a 11 a 12 + a 12 a 22 + a 13 a 32 ) E 12 + + ( a 11 a 13 + a 12 a 23 + a 13 a 33 ) E 13 = =(a_{11}^2+a_{12}a_{21}+a_{13}a_{31})E_{11}+\\
+(a_{11}a_{12}+a_{12}a_{22}+a_{13}a_{32})E_{12}+\\
+(a_{11}a_{13}+a_{12}a_{23}+a_{13}a_{33})E_{13}= = ( a 11 2 + a 12 a 21 + a 13 a 31 ) E 11 + + ( a 11 a 12 + a 12 a 22 + a 13 a 32 ) E 12 + + ( a 11 a 13 + a 12 a 23 + a 13 a 33 ) E 13 =
+ ( a 21 a 11 + a 22 a 21 + a 23 a 31 ) E 21 + + ( a 21 a 12 + a 22 2 + a 23 a 32 ) E 22 + + ( a 21 a 13 + a 22 a 23 + a 23 a 33 ) E 23 + + ( a 31 a 11 + a 32 a 21 + a 33 a 31 ) E 31 + + ( a 31 a 12 + a 32 a 22 + a 33 a 32 ) E 32 + + ( a 31 a 13 + a 32 a 23 + a 33 2 ) E 33 +(a_{21}a_{11}+a_{22}a_{21}+a_{23}a_{31})E_{21}+\\
+(a_{21}a_{12}+a_{22}^2+a_{23}a_{32})E_{22}+\\
+(a_{21}a_{13}+a_{22}a_{23}+a_{23}a_{33})E_{23}+\\
+(a_{31}a_{11}+a_{32}a_{21}+a_{33}a_{31})E_{31}+\\
+(a_{31}a_{12}+a_{32}a_{22}+a_{33}a_{32})E_{32}+\\
+(a_{31}a_{13}+a_{32}a_{23}+a_{33}^2)E_{33} + ( a 21 a 11 + a 22 a 21 + a 23 a 31 ) E 21 + + ( a 21 a 12 + a 22 2 + a 23 a 32 ) E 22 + + ( a 21 a 13 + a 22 a 23 + a 23 a 33 ) E 23 + + ( a 31 a 11 + a 32 a 21 + a 33 a 31 ) E 31 + + ( a 31 a 12 + a 32 a 22 + a 33 a 32 ) E 32 + + ( a 31 a 13 + a 32 a 23 + a 33 2 ) E 33
If A 2 = 0 A^2=0 A 2 = 0 then
a 11 2 + a 12 a 21 + a 13 a 31 = 0 a 11 a 12 + a 12 a 22 + a 13 a 32 = 0 a 11 a 13 + a 12 a 23 + a 13 a 33 = 0 a 21 a 11 + a 22 a 21 + a 23 a 31 = 0 a 21 a 12 + a 22 2 + a 23 a 32 = 0 a 21 a 13 + a 22 a 23 + a 23 a 33 = 0 a 31 a 11 + a 32 a 21 + a 33 a 31 = 0 a 31 a 12 + a 32 a 22 + a 33 a 32 = 0 a 31 a 13 + a 32 a 23 + a 33 2 = 0 a_{11}^2+a_{12}a_{21}+a_{13}a_{31}=0\\
a_{11}a_{12}+a_{12}a_{22}+a_{13}a_{32}=0\\
a_{11}a_{13}+a_{12}a_{23}+a_{13}a_{33}=0\\
a_{21}a_{11}+a_{22}a_{21}+a_{23}a_{31}=0\\
a_{21}a_{12}+a_{22}^2+a_{23}a_{32}=0\\
a_{21}a_{13}+a_{22}a_{23}+a_{23}a_{33}=0\\
a_{31}a_{11}+a_{32}a_{21}+a_{33}a_{31}=0\\
a_{31}a_{12}+a_{32}a_{22}+a_{33}a_{32}=0\\
a_{31}a_{13}+a_{32}a_{23}+a_{33}^2=0 a 11 2 + a 12 a 21 + a 13 a 31 = 0 a 11 a 12 + a 12 a 22 + a 13 a 32 = 0 a 11 a 13 + a 12 a 23 + a 13 a 33 = 0 a 21 a 11 + a 22 a 21 + a 23 a 31 = 0 a 21 a 12 + a 22 2 + a 23 a 32 = 0 a 21 a 13 + a 22 a 23 + a 23 a 33 = 0 a 31 a 11 + a 32 a 21 + a 33 a 31 = 0 a 31 a 12 + a 32 a 22 + a 33 a 32 = 0 a 31 a 13 + a 32 a 23 + a 33 2 = 0
This system has zero solution only a i j ∈ Z a_{ij}\in Z a ij ∈ Z .
So A 2 ≠ 0 A^2\neq0 A 2 = 0 .
Then M 3 [ Z ] M_3[Z] M 3 [ Z ] has no nilpotent elements.
Comments
Dear Shiva, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks