Question #323206

6.86 kg of water vapor are contained at 150 kPa ad 90 percent quality in a

suitable enclosure. Calculate the heat in kJ which must be added in order to just

produce a saturated vapor. NOTE: - INDICATE THE HS and TS DIAGRAM - INDICATE THE INITIAL AND FINAL STATE OF THE SUBSTANCE


1
Expert's answer
2022-04-05T01:08:09-0400

P1=150kPaP_1=150kPa

x1=0.9x_1=0.9

x2=1x_2=1 (At the end,state is saturated vapour)

V1=V2V_1=V_2 (Vapour is in enclosure,so the volume remains constant)

From tables;

At P1=150kPaP_1=150kPa

hf=467.13kJ/kgh_f=467.13kJ/kg

hg=2693.1kJ/kgh_g=2693.1kJ/kg

vf=0.001053m3/kgv_f=0.001053m^3/kg

vg=1.1594m3/kgv_g=1.1594m^3/kg

So,at state point 1;

v1=vf+x1(vgvf)v_1=v_f+x_1(v_g-v_f)

v1=0.001053+0.9(1.15940.001053)=1.0436m3/kgv_1=0.001053+0.9(1.1594-0.001053)=1.0436m^3/kg

And;

h1=hf+x(hghf)h_1=h_f+x(h_g-h_f)

h1=467.13+0.9(2693.1476.13)=2470.503kJ/kgh_1=467.13+0.9(2693.1-476.13)=2470.503kJ/kg

But;

v1=v2=1.0436m3/kgv_1=v_2=1.0436m^3/kg

Also;

x2=1x_2=1

Hence;

Pcan be given by linear interpolation between 150kPa and 175kPa;

From the tables,at 175kPa;

vg=1.0037m3/kgv_g=1.0037m^3/kg

hg=2700.2kJ/kgh_g=2700.2kJ/kg

Hence;

P2=150+1.04361.15941.00371.1594(175150)=168.59kPaP_2=150+\frac{1.0436-1.1594}{1.0037-1.1594}(175-150)=168.59kPaAnd;

h2=2693.1+1.04361.15941.00371.1594(2700.22693.1)=2698.38kJ/kgh_2=2693.1+\frac{1.0436-1.1594}{1.0037-1.1594}(2700.2-2693.1)=2698.38kJ/kg

Heat addition in the process;

Q12=m(u2u1)Q_{12}=m(u_2-u_1)

Q12=m(h2h1)m(p2v2p1v1)Q_{12}=m(h_2-h_1)-m(p_2v_2-p_1v_1)

By direct substitution;

Q12=5(2698.382470.503)5(168.59×1.0436150×1.0436)=1042.54kJQ_{12}=5(2698.38-2470.503)-5(168.59×1.0436-150×1.0436)=1042.54kJ

Answers;

P2=168.59kPaP_2=168.59kPa

Q=1042.54kJQ=1042.54kJ

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS