Compare the amount of solar energy input to a horizontal surface for winter and summer months in Cairo (Egypt) and Upington (South Africa). Determine the ratio of solar energy input in summer to that in winter for each city.
The constant scheduled load shedding in South Africa has commonly been executed in an attempt to maintain the long aging coal power plants in the country. With the rise in the reduction of fossil fuels, efforts to eradicate environmental hazards of carbon through solar photovoltaic (PV) resources to their complete prospect are in progress. South Africa, and in particular the town Alice, acquires sunshine annually, making it appropriate to harvest solar energy. This work aims to characterize solar radiation, clearness index (Kt), and diffuse fraction (Kd) in Alice, South Africa. Hourly global and diffuse solar irradiance were estimated into monthly, seasonal, and yearly variations of Kt and Kd for the years 2017–2020. The range of values for describing the daily classification of sky condition was centered on earlier studies. The cumulative frequency and frequency distribution of daily Kt was analyzed statistically in an individual month. The analyses show that the average percentage frequency of Kt within the period is 11.72% of the cloudy days, 57% of partially cloudy days, and 31.28% of clear sky days. The findings of this research show that Alice remains a key contender for solar energy conversion location, owing to its reasonably high frequency (Kt > 0.40) of clear and partially cloudy skies. Hence, it is essential to establish energy-efficiency for energy consumption and also for daily performances.
Comments
Leave a comment