A solid square rod is cantilevered at one end. The rod is 0.6 m long and supports a completely reversing transverse load at the other end of ±2 kN. The material is AISI 1080 hot-rolled steel. If the rod must support this load for 104 cycles with a factor of safety of 1.5 at 100°C, what dimension should the square cross section have? Neglect any stress concentrations at the support end.
"L=0.6 m,F \na\n\u200b\n =2 kN,n=1.5,N=10 \n4\n cycles, S \nut\n\u200b\n =770 MPa,S \ny\n\u200b\n =420 MPa"
First evaluate the fatigue strength.
"S \ne\n\u2032\n\u200b\n =0.5(770)=385 MPa"
"S \ne\n\u2032\n\u200b\n =0.5(770)=385 MPa"
ince the size is not yet known, assume a typical value of "k_{b}\u200b = 0.85" and check later. All other modifiers are equal to one.
"S \ne\n\u200b\n ="
"=0.488(0.85)(385)=160 MPa"
"S \nut\n\u200b\n =770\/6.89=112 kpsi"
"f = 0.83"
"a=\\frac{\\left(f S_{u t}\\right)^{2}}{S_{e}}=\\frac{[0.83(770)]^{2}}{160}=2553 MPa"
"b=-\\frac{1}{3} \\log \\left(\\frac{f S_{u t}}{S_{e}}\\right)=-\\frac{1}{3} \\log \\left(\\frac{0.83(770)}{160}\\right)=-0.2005"
"S_{f}=a N^{b}=2553\\left(10^{4}\\right)^{-0.2005}=403 MPa"
Now evaluate the stress.
"M \nmax\n\u200b\n =(2000 N)(0.6 m)=1200 N\u22c5m"
"\u03c3_a =\u03c3 _{max}=\\frac{Mc}{I} = \\frac{6M}{B^3}= \\frac{7200}{b^3} Pa"
"\\sigma_{max}= \\frac{7200}{0.030^3}\\times 10^-6= 267 Mpa"
"n_y= \\frac{S_y}{\\sigma_{max}}=\\frac{420}{267}=1.57"
Comments
Leave a comment