Question #306026

Carbon Dioxide at P1= 500 psia, V1= 1 ft^3/min, and t1=200 F are cooled at constant volume to 130 F in an internally reversible manner. For mdot=0.9 lbm/min, determine pdv and - Vdp. For nonflow process, find p2, DELTA u, DELTA h and Q. Also compute delta S.


1
Expert's answer
2022-03-07T14:46:03-0500

Solution;

From the gas equation;

P1V1=mRT1P_1V_1=mRT_1

For carbon dioxide ,R=1130

V1=mRT1P1=0.9×1130×(659.67500=1341.77ft3/minV_1=\frac{mRT_1}{P_1}=\frac{0.9×1130×(659.67}{500}=1341.77ft^3/min

Pressure after isentropic process;

P2P1=(T2T1)γγ1\frac{P_2}{P_1}=(\frac{T_2}{T_1})^{\frac{\gamma}{\gamma -1}}

P2=500(130+459.67200+459.67)1.40.4=337.64psiaP_2=500(\frac{130+459.67}{200+459.67})^{\frac{1.4}{0.4}}=337.64psia

Volume after isentropic process;

P2P1=(V1V2)γ\frac{P_2}{P_1}=(\frac{V_1}{V_2})^{\gamma}

337.64500=(1341.77V2)1.4\frac{337.64}{500}=(\frac{1341.77}{V_2})^{1.4}

V2=1776.13ft3/minV_2=1776.13ft^3/min

pdV=P1V1P2V2γ1pdV=\frac{P_1V_1-P_2V_2}{\gamma-1}

pdV=500×1341.77(337.64×17776.130.4pdV=\frac{500×1341.77-(337.64×17776.13}{0.4}

PdV=177981.17Btu/minPdV=177981.17Btu/min

VdP=rPdVVdP=rPdV =1.4×177981.17

VdP=249173.63Btu/minVdP=249173.63Btu/min

Δu=mCv(T2T1)\Delta u=mC_v(T_2-T_1)

Δu=0.9×2825(130200)\Delta u=0.9×2825(130-200)

Δu=177,975Btu/min\Delta u=-177,975Btu/min

Δh=mCp(T2T1)\Delta h=mC_p(T_2-T_1)

Δh=0.9×3955×(130200)\Delta h=0.9×3955×(130-200)

Δh=249165Btu/min\Delta h=-249165Btu/min

Q=Δh+VdPQ=\Delta h+VdP

Q=249165+249173=8Btu/minQ=-249165+249173=8Btu/min

Δs=mCvlnT2T1\Delta s=mC_vln\frac{T_2}{T_1}

Δs=0.9×2825ln130200\Delta s=0.9×2825ln\frac{130}{200}

Δs=1095.2656Btu/min\Delta s=-1095.2656Btu/min



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS