Carbon Dioxide at P1= 500 psia, V1= 1 ft^3/min, and t1=200 F are cooled at constant volume to 130 F in an internally reversible manner. For mdot=0.9 lbm/min, determine pdv and - Vdp. For nonflow process, find p2, DELTA u, DELTA h and Q. Also compute delta S.
Solution;
From the gas equation;
"P_1V_1=mRT_1"
For carbon dioxide ,R=1130
"V_1=\\frac{mRT_1}{P_1}=\\frac{0.9\u00d71130\u00d7(659.67}{500}=1341.77ft^3\/min"
Pressure after isentropic process;
"\\frac{P_2}{P_1}=(\\frac{T_2}{T_1})^{\\frac{\\gamma}{\\gamma -1}}"
"P_2=500(\\frac{130+459.67}{200+459.67})^{\\frac{1.4}{0.4}}=337.64psia"
Volume after isentropic process;
"\\frac{P_2}{P_1}=(\\frac{V_1}{V_2})^{\\gamma}"
"\\frac{337.64}{500}=(\\frac{1341.77}{V_2})^{1.4}"
"V_2=1776.13ft^3\/min"
"pdV=\\frac{P_1V_1-P_2V_2}{\\gamma-1}"
"pdV=\\frac{500\u00d71341.77-(337.64\u00d717776.13}{0.4}"
"PdV=177981.17Btu\/min"
"VdP=rPdV" =1.4×177981.17
"VdP=249173.63Btu\/min"
"\\Delta u=mC_v(T_2-T_1)"
"\\Delta u=0.9\u00d72825(130-200)"
"\\Delta u=-177,975Btu\/min"
"\\Delta h=mC_p(T_2-T_1)"
"\\Delta h=0.9\u00d73955\u00d7(130-200)"
"\\Delta h=-249165Btu\/min"
"Q=\\Delta h+VdP"
"Q=-249165+249173=8Btu\/min"
"\\Delta s=mC_vln\\frac{T_2}{T_1}"
"\\Delta s=0.9\u00d72825ln\\frac{130}{200}"
"\\Delta s=-1095.2656Btu\/min"
Comments
Leave a comment