Macaulay's method:
Moment equation; M(x)=-12000(x-0)1-10000(x-1)0
EIdx2d2y=M(x)=−[12(x)1+10(x−1)0]∗103Nm
integrating;
EIdxdy=−[6(x)2+10(x−1)1]∗103+A
at x=3, dxdy=0
0=−[6(3)2+10(3−1)1]∗103+A
A=74000
So,
EIdxdy=−[6(x)2+10(x−1)−74]∗103
on integrating again,
EIy=−[2(x)3+5(x−1)2−74x]∗103+B
at x=3, y=0
0=−[2(3)3+5(3−1)2−74∗3]∗103+B
B=-148000
So,
EIy=−[2(x)3+5(x−1)2−74x+148]∗103
A=74000
B=-148000
Slope at free end;
EIdxdy at x=0 is 74000
dxdy at x=0 is 2∗1011∗37∗10−674000
=0.01 rad
Comments