Question #304194

A cantilever is 3 meters long. The free end is on the left. On the left is a point load of 12kN. One meter from the left a bending moment of 10 kNm anticlockwise is applied.Take E = 200 GPa and I = 37 x 10-6m4

Use Macaulay' s method and take x = 0 on the left.


1
Expert's answer
2022-03-02T00:45:01-0500

Macaulay's method:

Moment equation; M(x)=-12000(x-0)1-10000(x-1)0

EId2ydx2=M(x)=[12(x)1+10(x1)0]103NmEI\frac{d^2 y}{dx^2}=M(x)=-[12(x)^1+10(x-1)^0]*10^3 Nm

integrating;

EIdydx=[6(x)2+10(x1)1]103+AEI\frac{dy}{dx}=-[6(x)^2+10(x-1)^1]*10^3 +A

at x=3, dydx=0\frac{dy}{dx}=0

0=[6(3)2+10(31)1]103+A0=-[6(3)^2+10(3-1)^1]*10^3 +A

A=74000

So,

EIdydx=[6(x)2+10(x1)74]103EI\frac{dy}{dx}=-[6(x)^2+10(x-1)-74]*10^3

on integrating again,

EIy=[2(x)3+5(x1)274x]103+BEIy=-[2(x)^3+5(x-1)^2-74x]*10^3 +B

at x=3, y=0

0=[2(3)3+5(31)2743]103+B0=-[2(3)^3+5(3-1)^2-74*3]*10^3 +B

B=-148000

So,

EIy=[2(x)3+5(x1)274x+148]103EIy=-[2(x)^3+5(x-1)^2-74x+148]*10^3

A=74000

B=-148000

Slope at free end;

EIdydxEI\frac{dy}{dx} at x=0 is 74000

dydx\frac{dy}{dx} at x=0 is 740002101137106\frac{74000}{2*10^{11}*37*10^{-6}}

=0.01 rad


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS