A cantilever is 3 meters long. The free end is on the left. On the left is a point load of 12kN. One meter from the left a bending moment of 10 kNm anticlockwise is applied.Take E = 200 GPa and I = 37 x 10-6m4
Use Macaulay' s method and take x = 0 on the left.
Macaulay's method:
Moment equation; M(x)=-12000(x-0)1-10000(x-1)0
"EI\\frac{d^2 y}{dx^2}=M(x)=-[12(x)^1+10(x-1)^0]*10^3 Nm"
integrating;
"EI\\frac{dy}{dx}=-[6(x)^2+10(x-1)^1]*10^3 +A"
at x=3, "\\frac{dy}{dx}=0"
"0=-[6(3)^2+10(3-1)^1]*10^3 +A"
A=74000
So,
"EI\\frac{dy}{dx}=-[6(x)^2+10(x-1)-74]*10^3"
on integrating again,
"EIy=-[2(x)^3+5(x-1)^2-74x]*10^3 +B"
at x=3, y=0
"0=-[2(3)^3+5(3-1)^2-74*3]*10^3 +B"
B=-148000
So,
"EIy=-[2(x)^3+5(x-1)^2-74x+148]*10^3"
A=74000
B=-148000
Slope at free end;
"EI\\frac{dy}{dx}" at x=0 is 74000
"\\frac{dy}{dx}" at x=0 is "\\frac{74000}{2*10^{11}*37*10^{-6}}"
=0.01 rad
Comments
Leave a comment