Question #296974

The stream function for a two-dimensional flow is given by ψ = 8xy, calculate the velocity at the point p(4, 5). Find the velocity potential function ϕ.


1
Expert's answer
2022-02-15T00:19:02-0500

In velocity we can write 



u=ψy,v=ψxu=\dfrac{\partial\psi}{\partial y}, v=-\dfrac{\partial\psi}{\partial x}

Given ψ=8xy\psi=8xy

u=ψy=8x,v=ψx=8yu=\dfrac{\partial\psi}{\partial y}=8x, v=-\dfrac{\partial\psi}{\partial x}=-8y

Calculate the velocity at the point p(4, 5)



u=32,v=40u=32, v=-40velocity=u2+v2=(32)2+(40)2=841|velocity|=\sqrt{u^2+v^2 }=\sqrt{(32)^2+(-40)^2}=8\sqrt{41}u=φx,v=φyu=\dfrac{\partial\varphi}{\partial x}, v=\frac{\partial\varphi}{\partial y}u=φx=8xu=\dfrac{\partial\varphi}{\partial x}=8x

Integrate with respect to xx



φ=4x2+g(y)\varphi=4x^2+g(y)φy=dgdy=8y\frac{\partial\varphi}{\partial y}=\frac{dg}{d y}=-8y

Integrate with respect to yy



g(y)=4y2+Cg(y)=-4y^2+C

Then



φ(x,y)=4x24y2+C\varphi(x,y)=4x^2-4y^2+C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS