Answer to Question #296973 in Mechanical Engineering for bhargav

Question #296973

If for a two-dimensional potential flow, the velocity potential is given by ϕ = 4x(3y - 4), determine the velocity at the point (2, 3) . Determine also the value of stream function ψ at the poins (2, 3).


1
Expert's answer
2022-02-15T08:50:01-0500

Velocity potential Function

u=ϕx;  v=ϕyu = - \frac{{\partial \phi }}{{\partial x}};\;v = - \frac{{\partial \phi }}{{\partial y}}

Stream Function

u=ψy;  v=ψxu = \frac{{\partial ψ }}{{\partial y}};\;v = -\frac{{\partial ψ }}{{\partial x}}


ϕ=4x(3y4)ϕ = 4x(3y - 4)


u=δϕδxu=-\frac{\delta \phi}{\delta x} and v=δϕδy=δψδxv=-\frac{\delta \phi}{\delta y}=-\frac{\delta ψ}{\delta x}


u=4(3y4)=δψδyu = -4 (3y - 4) =\frac{\delta ψ}{\delta y}


ψy=16y6y2+C1ψy = 16y - 6y2 + C1


and


v=12x=δψδxv = -12x =-\frac{\delta ψ}{\delta x}


ψx=6x2+C2ψx = 6x2 + C2


Therefore, ψ=ψx+ψyψ = ψx + ψy


ψ=6(x2y2)+16yψ = 6(x2 – y2) + 16y


ψ(2,3)=6(49)+16×3{\left. ψ \right|_{\left( {2,3} \right)}} = 6\left( {4 - 9} \right) + 16 \times 3


=18= 18 units




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment