One kg of fluid enters the steady flow apparatus at a pressure of P1, velocity 16m/s and
specific volume 0.4 m3/kg. The Inlet is 30 m above the ground level. The fluid leaves the
apparatus at Pressure of P2, velocity of 275 m/s and specific volume 0.6 m3/kg. The outlet is
at the ground level. The total heat loss between the inlet and outlet is 10 KJ/kg of fluid. If 140
KJ/kg of work is done by the system, find the change in specific internal energy and indicate
whether this is a increase or decrease.
P1 = 6 Bar − {
√X5
849 } Pa ; P2 = 1 Bar + {+√99 − X
4
}Pa
x= 51
The steady flow energy equation:
Q − W = mΔH + 1/2m(C22 − C12) + mg(Z2 − Z1)
ΔH = (U2 + p2"\\upsilon"2) − (U1 + p1"\\upsilon"1) = ΔU + p2"\\upsilon"2 − p1"\\upsilon"1
"C" - velocity, "p" - pressure, "v" - specific volume, "Z" - height, "U" - internal energy.
10 x 103 J/kg - (-140 x 103 J/kg) = 1 kg x ΔH + 1/2 x 1 kg x ((16 m/s)2 − (275 m/s)2) + 1 kg x 9.81 m/s2 x (30 m − 0 m)
150 x 103 J/kg = ∆H - 37 390 J/kg
∆H = 187 390 J/kg
p2 = 1 Bar + {+√99 − X4}Pa = 1 Bar + {+√99 − 4 x 51} = 100 000 Pa - 194 Pa = 99 806 Pa
p1 = 6 Bar − {√X5849} Pa = 600 000 Pa - {√51 x 5849} Pa = 600 000 Pa - 546 Pa = 599 453 Pa
187 390 J/kg = ∆U + 99 806 Pa x 0.6 m3/kg - 599 453 Pa x 0.4 m3/kg
∆U = 367 288 J/kg = 367.3 kJ/kg (positive sign indicates that specific internal energy increased)
Comments
Leave a comment